Metamath Proof Explorer


Theorem xpssca

Description: Value of the scalar field of a binary structure product. For concreteness, we choose the scalar field to match the left argument, but in most cases where this slot is meaningful both factors will have the same scalar field, so that it doesn't matter which factor is chosen. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypotheses xpssca.t T=R×𝑠S
xpssca.g G=ScalarR
xpssca.1 φRV
xpssca.2 φSW
Assertion xpssca φG=ScalarT

Proof

Step Hyp Ref Expression
1 xpssca.t T=R×𝑠S
2 xpssca.g G=ScalarR
3 xpssca.1 φRV
4 xpssca.2 φSW
5 eqid G𝑠R1𝑜S=G𝑠R1𝑜S
6 2 fvexi GV
7 6 a1i φGV
8 prex R1𝑜SV
9 8 a1i φR1𝑜SV
10 5 7 9 prdssca φG=ScalarG𝑠R1𝑜S
11 eqid BaseR=BaseR
12 eqid BaseS=BaseS
13 eqid xBaseR,yBaseSx1𝑜y=xBaseR,yBaseSx1𝑜y
14 1 11 12 3 4 13 2 5 xpsval φT=xBaseR,yBaseSx1𝑜y-1𝑠G𝑠R1𝑜S
15 1 11 12 3 4 13 2 5 xpsrnbas φranxBaseR,yBaseSx1𝑜y=BaseG𝑠R1𝑜S
16 13 xpsff1o2 xBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜y
17 f1ocnv xBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜yxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜y1-1 ontoBaseR×BaseS
18 16 17 mp1i φxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜y1-1 ontoBaseR×BaseS
19 f1ofo xBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜y1-1 ontoBaseR×BaseSxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜yontoBaseR×BaseS
20 18 19 syl φxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜yontoBaseR×BaseS
21 ovexd φG𝑠R1𝑜SV
22 eqid ScalarG𝑠R1𝑜S=ScalarG𝑠R1𝑜S
23 14 15 20 21 22 imassca φScalarG𝑠R1𝑜S=ScalarT
24 10 23 eqtrd φG=ScalarT