Metamath Proof Explorer


Theorem xrecex

Description: Existence of reciprocal of nonzero real number. (Contributed by Thierry Arnoux, 17-Dec-2016)

Ref Expression
Assertion xrecex AA0xA𝑒x=1

Proof

Step Hyp Ref Expression
1 ax-rrecex AA0xAx=1
2 rexmul AxA𝑒x=Ax
3 2 eqeq1d AxA𝑒x=1Ax=1
4 3 ex AxA𝑒x=1Ax=1
5 4 adantr AA0xA𝑒x=1Ax=1
6 5 pm5.32d AA0xA𝑒x=1xAx=1
7 6 rexbidv2 AA0xA𝑒x=1xAx=1
8 1 7 mpbird AA0xA𝑒x=1