| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmulcand.1 |
|
| 2 |
|
xmulcand.2 |
|
| 3 |
|
xmulcand.3 |
|
| 4 |
|
xmulcand.4 |
|
| 5 |
|
xrecex |
|
| 6 |
3 4 5
|
syl2anc |
|
| 7 |
|
oveq2 |
|
| 8 |
|
simprl |
|
| 9 |
8
|
rexrd |
|
| 10 |
3
|
adantr |
|
| 11 |
10
|
rexrd |
|
| 12 |
|
xmulcom |
|
| 13 |
9 11 12
|
syl2anc |
|
| 14 |
|
simprr |
|
| 15 |
13 14
|
eqtrd |
|
| 16 |
15
|
oveq1d |
|
| 17 |
1
|
adantr |
|
| 18 |
|
xmulass |
|
| 19 |
9 11 17 18
|
syl3anc |
|
| 20 |
|
xmullid |
|
| 21 |
17 20
|
syl |
|
| 22 |
16 19 21
|
3eqtr3d |
|
| 23 |
15
|
oveq1d |
|
| 24 |
2
|
adantr |
|
| 25 |
|
xmulass |
|
| 26 |
9 11 24 25
|
syl3anc |
|
| 27 |
|
xmullid |
|
| 28 |
24 27
|
syl |
|
| 29 |
23 26 28
|
3eqtr3d |
|
| 30 |
22 29
|
eqeq12d |
|
| 31 |
7 30
|
imbitrid |
|
| 32 |
6 31
|
rexlimddv |
|
| 33 |
|
oveq2 |
|
| 34 |
32 33
|
impbid1 |
|