| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmulcand.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
xmulcand.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
xmulcand.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
|
xmulcand.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 5 |
|
xrecex |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ∃ 𝑥 ∈ ℝ ( 𝐶 ·e 𝑥 ) = 1 ) |
| 6 |
3 4 5
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ( 𝐶 ·e 𝑥 ) = 1 ) |
| 7 |
|
oveq2 |
⊢ ( ( 𝐶 ·e 𝐴 ) = ( 𝐶 ·e 𝐵 ) → ( 𝑥 ·e ( 𝐶 ·e 𝐴 ) ) = ( 𝑥 ·e ( 𝐶 ·e 𝐵 ) ) ) |
| 8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → 𝑥 ∈ ℝ ) |
| 9 |
8
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → 𝑥 ∈ ℝ* ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → 𝐶 ∈ ℝ ) |
| 11 |
10
|
rexrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → 𝐶 ∈ ℝ* ) |
| 12 |
|
xmulcom |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝑥 ·e 𝐶 ) = ( 𝐶 ·e 𝑥 ) ) |
| 13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 𝑥 ·e 𝐶 ) = ( 𝐶 ·e 𝑥 ) ) |
| 14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 𝐶 ·e 𝑥 ) = 1 ) |
| 15 |
13 14
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 𝑥 ·e 𝐶 ) = 1 ) |
| 16 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( ( 𝑥 ·e 𝐶 ) ·e 𝐴 ) = ( 1 ·e 𝐴 ) ) |
| 17 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → 𝐴 ∈ ℝ* ) |
| 18 |
|
xmulass |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑥 ·e 𝐶 ) ·e 𝐴 ) = ( 𝑥 ·e ( 𝐶 ·e 𝐴 ) ) ) |
| 19 |
9 11 17 18
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( ( 𝑥 ·e 𝐶 ) ·e 𝐴 ) = ( 𝑥 ·e ( 𝐶 ·e 𝐴 ) ) ) |
| 20 |
|
xmullid |
⊢ ( 𝐴 ∈ ℝ* → ( 1 ·e 𝐴 ) = 𝐴 ) |
| 21 |
17 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 1 ·e 𝐴 ) = 𝐴 ) |
| 22 |
16 19 21
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 𝑥 ·e ( 𝐶 ·e 𝐴 ) ) = 𝐴 ) |
| 23 |
15
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( ( 𝑥 ·e 𝐶 ) ·e 𝐵 ) = ( 1 ·e 𝐵 ) ) |
| 24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → 𝐵 ∈ ℝ* ) |
| 25 |
|
xmulass |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝑥 ·e 𝐶 ) ·e 𝐵 ) = ( 𝑥 ·e ( 𝐶 ·e 𝐵 ) ) ) |
| 26 |
9 11 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( ( 𝑥 ·e 𝐶 ) ·e 𝐵 ) = ( 𝑥 ·e ( 𝐶 ·e 𝐵 ) ) ) |
| 27 |
|
xmullid |
⊢ ( 𝐵 ∈ ℝ* → ( 1 ·e 𝐵 ) = 𝐵 ) |
| 28 |
24 27
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 1 ·e 𝐵 ) = 𝐵 ) |
| 29 |
23 26 28
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( 𝑥 ·e ( 𝐶 ·e 𝐵 ) ) = 𝐵 ) |
| 30 |
22 29
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( ( 𝑥 ·e ( 𝐶 ·e 𝐴 ) ) = ( 𝑥 ·e ( 𝐶 ·e 𝐵 ) ) ↔ 𝐴 = 𝐵 ) ) |
| 31 |
7 30
|
imbitrid |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ ( 𝐶 ·e 𝑥 ) = 1 ) ) → ( ( 𝐶 ·e 𝐴 ) = ( 𝐶 ·e 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 32 |
6 31
|
rexlimddv |
⊢ ( 𝜑 → ( ( 𝐶 ·e 𝐴 ) = ( 𝐶 ·e 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 33 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐶 ·e 𝐴 ) = ( 𝐶 ·e 𝐵 ) ) |
| 34 |
32 33
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐶 ·e 𝐴 ) = ( 𝐶 ·e 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |