Metamath Proof Explorer


Theorem xrleltne

Description: 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrleltne A*B*ABA<BBA

Proof

Step Hyp Ref Expression
1 xrlttri3 A*B*A=B¬A<B¬B<A
2 simpl ¬A<B¬B<A¬A<B
3 1 2 syl6bi A*B*A=B¬A<B
4 3 adantr A*B*ABA=B¬A<B
5 xrleloe A*B*ABA<BA=B
6 5 biimpa A*B*ABA<BA=B
7 6 ord A*B*AB¬A<BA=B
8 4 7 impbid A*B*ABA=B¬A<B
9 8 necon2abid A*B*ABA<BAB
10 necom BAAB
11 9 10 bitr4di A*B*ABA<BBA
12 11 3impa A*B*ABA<BBA