Metamath Proof Explorer


Theorem xrltne

Description: 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006)

Ref Expression
Assertion xrltne A*B*A<BBA

Proof

Step Hyp Ref Expression
1 orc A<BA<BB<A
2 xrltso <Or*
3 sotrieq <Or*A*B*A=B¬A<BB<A
4 2 3 mpan A*B*A=B¬A<BB<A
5 4 necon2abid A*B*A<BB<AAB
6 1 5 imbitrid A*B*A<BAB
7 6 3impia A*B*A<BAB
8 7 necomd A*B*A<BBA