Metamath Proof Explorer


Theorem xrnss3v

Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v with a different symbol, see https://github.com/metamath/set.mm/issues/2469 . (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion xrnss3v A B V × V × V

Proof

Step Hyp Ref Expression
1 df-xrn A B = 1 st V × V -1 A 2 nd V × V -1 B
2 inss1 1 st V × V -1 A 2 nd V × V -1 B 1 st V × V -1 A
3 relco Rel 1 st V × V -1 A
4 vex z V
5 vex y V
6 4 5 brcnv z 1 st V × V -1 y y 1 st V × V z
7 4 brresi y 1 st V × V z y V × V y 1 st z
8 7 simplbi y 1 st V × V z y V × V
9 6 8 sylbi z 1 st V × V -1 y y V × V
10 9 adantl x A z z 1 st V × V -1 y y V × V
11 10 exlimiv z x A z z 1 st V × V -1 y y V × V
12 vex x V
13 12 5 opelco x y 1 st V × V -1 A z x A z z 1 st V × V -1 y
14 opelxp x y V × V × V x V y V × V
15 12 14 mpbiran x y V × V × V y V × V
16 11 13 15 3imtr4i x y 1 st V × V -1 A x y V × V × V
17 3 16 relssi 1 st V × V -1 A V × V × V
18 2 17 sstri 1 st V × V -1 A 2 nd V × V -1 B V × V × V
19 1 18 eqsstri A B V × V × V