Metamath Proof Explorer


Theorem xrsup0

Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005)

Ref Expression
Assertion xrsup0 sup*<=−∞

Proof

Step Hyp Ref Expression
1 0ss *
2 mnfxr −∞*
3 ral0 y¬−∞<y
4 rexr yy*
5 nltmnf y*¬y<−∞
6 4 5 syl y¬y<−∞
7 6 pm2.21d yy<−∞zy<z
8 7 rgen yy<−∞zy<z
9 supxr *−∞*y¬−∞<yyy<−∞zy<zsup*<=−∞
10 1 2 3 8 9 mp4an sup*<=−∞