Metamath Proof Explorer


Theorem zeo2

Description: An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015)

Ref Expression
Assertion zeo2 NN2¬N+12

Proof

Step Hyp Ref Expression
1 zcn NN
2 peano2cn NN+1
3 1 2 syl NN+1
4 2cnd N2
5 2ne0 20
6 5 a1i N20
7 3 4 6 divcan2d N2N+12=N+1
8 1 4 6 divcan2d N2N2=N
9 8 oveq1d N2N2+1=N+1
10 7 9 eqtr4d N2N+12=2N2+1
11 zneo N+12N22N+122N2+1
12 11 expcom N2N+122N+122N2+1
13 12 necon2bd N22N+12=2N2+1¬N+12
14 10 13 syl5com NN2¬N+12
15 zeo NN2N+12
16 15 ord N¬N2N+12
17 16 con1d N¬N+12N2
18 14 17 impbid NN2¬N+12