Metamath Proof Explorer


Theorem zerooval

Description: The value of the zero object function, i.e. the set of all zero objects of a category. (Contributed by AV, 3-Apr-2020)

Ref Expression
Hypotheses initoval.c φ C Cat
initoval.b B = Base C
initoval.h H = Hom C
Assertion zerooval φ ZeroO C = InitO C TermO C

Proof

Step Hyp Ref Expression
1 initoval.c φ C Cat
2 initoval.b B = Base C
3 initoval.h H = Hom C
4 df-zeroo ZeroO = c Cat InitO c TermO c
5 fveq2 c = C InitO c = InitO C
6 fveq2 c = C TermO c = TermO C
7 5 6 ineq12d c = C InitO c TermO c = InitO C TermO C
8 fvex InitO C V
9 8 inex1 InitO C TermO C V
10 9 a1i φ InitO C TermO C V
11 4 7 1 10 fvmptd3 φ ZeroO C = InitO C TermO C