Metamath Proof Explorer


Theorem zfreg

Description: The Axiom of Regularity using abbreviations. Axiom 6 of TakeutiZaring p. 21. This is called the "weak form". Axiom Reg of BellMachover p. 480. There is also a "strong form", not requiring that A be a set, that can be proved with more difficulty (see zfregs ). (Contributed by NM, 26-Nov-1995) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021)

Ref Expression
Assertion zfreg AVAxAxA=

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 1 biimpi AxxA
3 2 anim2i AVAAVxxA
4 zfregcl AVxxAxAyx¬yA
5 4 imp AVxxAxAyx¬yA
6 disj xA=yx¬yA
7 6 rexbii xAxA=xAyx¬yA
8 7 biimpri xAyx¬yAxAxA=
9 3 5 8 3syl AVAxAxA=