Metamath Proof Explorer


Theorem zlm0

Description: Zero of a ZZ -module. (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zlmlem2.1 W=ℤModG
zlm0.1 0˙=0G
Assertion zlm0 0˙=0W

Proof

Step Hyp Ref Expression
1 zlmlem2.1 W=ℤModG
2 zlm0.1 0˙=0G
3 eqid BaseG=BaseG
4 3 a1i BaseG=BaseG
5 1 3 zlmbas BaseG=BaseW
6 5 a1i BaseG=BaseW
7 eqid +G=+G
8 1 7 zlmplusg +G=+W
9 8 a1i xBaseGyBaseG+G=+W
10 9 oveqd xBaseGyBaseGx+Gy=x+Wy
11 4 6 10 grpidpropd 0G=0W
12 11 mptru 0G=0W
13 2 12 eqtri 0˙=0W