Metamath Proof Explorer


Theorem znegclb

Description: A complex number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion znegclb AAA

Proof

Step Hyp Ref Expression
1 znegcl AA
2 znegcl AA
3 negneg AA=A
4 3 eleq1d AAA
5 2 4 imbitrid AAA
6 1 5 impbid2 AAA