| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 3vfriswmgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3vfriswmgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | animorr | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∨  { 𝐴 ,  𝐵 }  ∈  𝐸 ) ) | 
						
							| 4 |  | preq2 | ⊢ ( 𝑤  =  𝐴  →  { 𝐴 ,  𝑤 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝑤  =  𝐴  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  { 𝐴 ,  𝐴 }  ∈  𝐸 ) ) | 
						
							| 6 |  | preq2 | ⊢ ( 𝑤  =  𝐵  →  { 𝐴 ,  𝑤 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑤  =  𝐵  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  { 𝐴 ,  𝐵 }  ∈  𝐸 ) ) | 
						
							| 8 | 5 7 | rexprg | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌 )  →  ( ∃ 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∨  { 𝐴 ,  𝐵 }  ∈  𝐸 ) ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  →  ( ∃ 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∨  { 𝐴 ,  𝐵 }  ∈  𝐸 ) ) ) | 
						
							| 10 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( ∃ 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  ( { 𝐴 ,  𝐴 }  ∈  𝐸  ∨  { 𝐴 ,  𝐵 }  ∈  𝐸 ) ) ) | 
						
							| 11 | 3 10 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ∃ 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 12 |  | df-rex | ⊢ ( ∃ 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  ∃ 𝑤 ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 13 | 11 12 | sylib | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ∃ 𝑤 ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 14 |  | vex | ⊢ 𝑤  ∈  V | 
						
							| 15 | 14 | elpr | ⊢ ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ↔  ( 𝑤  =  𝐴  ∨  𝑤  =  𝐵 ) ) | 
						
							| 16 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 17 | 16 | elpr | ⊢ ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ↔  ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 ) ) | 
						
							| 18 |  | eqidd | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐴 ) | 
						
							| 19 | 18 | a1i | ⊢ ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐴 ) ) | 
						
							| 20 | 19 | a1i13 | ⊢ ( 𝑦  =  𝐴  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐴 ) ) ) ) | 
						
							| 21 |  | preq2 | ⊢ ( 𝑦  =  𝐴  →  { 𝐴 ,  𝑦 }  =  { 𝐴 ,  𝐴 } ) | 
						
							| 22 | 21 | eleq1d | ⊢ ( 𝑦  =  𝐴  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  ↔  { 𝐴 ,  𝐴 }  ∈  𝐸 ) ) | 
						
							| 23 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐴 ) ) | 
						
							| 24 | 23 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 )  ↔  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐴 ) ) ) | 
						
							| 25 | 24 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) )  ↔  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐴 ) ) ) ) | 
						
							| 26 | 20 22 25 | 3imtr4d | ⊢ ( 𝑦  =  𝐴  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 27 | 2 | usgredgne | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  ≠  𝐴 ) | 
						
							| 28 | 27 | adantll | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  ≠  𝐴 ) | 
						
							| 29 |  | df-ne | ⊢ ( 𝐴  ≠  𝐴  ↔  ¬  𝐴  =  𝐴 ) | 
						
							| 30 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 31 | 30 | pm2.24i | ⊢ ( ¬  𝐴  =  𝐴  →  𝐴  =  𝐵 ) | 
						
							| 32 | 29 31 | sylbi | ⊢ ( 𝐴  ≠  𝐴  →  𝐴  =  𝐵 ) | 
						
							| 33 | 28 32 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐴  =  𝐵 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  𝐴  =  𝐵 ) ) | 
						
							| 35 | 34 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  𝐴  =  𝐵 ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐵 ) ) | 
						
							| 37 | 36 | 2a1i | ⊢ ( 𝑦  =  𝐵  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 38 |  | preq2 | ⊢ ( 𝑦  =  𝐵  →  { 𝐴 ,  𝑦 }  =  { 𝐴 ,  𝐵 } ) | 
						
							| 39 | 38 | eleq1d | ⊢ ( 𝑦  =  𝐵  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  ↔  { 𝐴 ,  𝐵 }  ∈  𝐸 ) ) | 
						
							| 40 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐴  =  𝑦  ↔  𝐴  =  𝐵 ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 )  ↔  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 42 | 41 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) )  ↔  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 43 | 37 39 42 | 3imtr4d | ⊢ ( 𝑦  =  𝐵  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 44 | 26 43 | jaoi | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 45 |  | eqeq1 | ⊢ ( 𝑤  =  𝐴  →  ( 𝑤  =  𝑦  ↔  𝐴  =  𝑦 ) ) | 
						
							| 46 | 45 | imbi2d | ⊢ ( 𝑤  =  𝐴  →  ( ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 )  ↔  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) ) ) | 
						
							| 47 | 5 46 | imbi12d | ⊢ ( 𝑤  =  𝐴  →  ( ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) )  ↔  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) ) ) ) | 
						
							| 48 | 47 | imbi2d | ⊢ ( 𝑤  =  𝐴  →  ( ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) )  ↔  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐴  =  𝑦 ) ) ) ) ) | 
						
							| 49 | 44 48 | imbitrrid | ⊢ ( 𝑤  =  𝐴  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) ) | 
						
							| 50 | 30 | pm2.24i | ⊢ ( ¬  𝐴  =  𝐴  →  𝐵  =  𝐴 ) | 
						
							| 51 | 29 50 | sylbi | ⊢ ( 𝐴  ≠  𝐴  →  𝐵  =  𝐴 ) | 
						
							| 52 | 28 51 | syl | ⊢ ( ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  ∧  { 𝐴 ,  𝐴 }  ∈  𝐸 )  →  𝐵  =  𝐴 ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph )  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  𝐵  =  𝐴 ) ) | 
						
							| 54 | 53 | ad2antlr | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  𝐵  =  𝐴 ) ) | 
						
							| 55 | 54 | com12 | ⊢ ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐴 ) ) | 
						
							| 56 | 55 | a1i13 | ⊢ ( 𝑦  =  𝐴  →  ( { 𝐴 ,  𝐴 }  ∈  𝐸  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐴 ) ) ) ) | 
						
							| 57 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐵  =  𝑦  ↔  𝐵  =  𝐴 ) ) | 
						
							| 58 | 57 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 )  ↔  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐴 ) ) ) | 
						
							| 59 | 58 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐴 ) ) ) ) | 
						
							| 60 | 56 22 59 | 3imtr4d | ⊢ ( 𝑦  =  𝐴  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 61 |  | eqidd | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐵 ) | 
						
							| 62 | 61 | a1i | ⊢ ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐵 ) ) | 
						
							| 63 | 62 | a1i13 | ⊢ ( 𝑦  =  𝐵  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐵 ) ) ) ) | 
						
							| 64 |  | eqeq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐵  =  𝑦  ↔  𝐵  =  𝐵 ) ) | 
						
							| 65 | 64 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 )  ↔  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐵 ) ) ) | 
						
							| 66 | 65 | imbi2d | ⊢ ( 𝑦  =  𝐵  →  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝐵 ) ) ) ) | 
						
							| 67 | 63 39 66 | 3imtr4d | ⊢ ( 𝑦  =  𝐵  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 68 | 60 67 | jaoi | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 69 |  | eqeq1 | ⊢ ( 𝑤  =  𝐵  →  ( 𝑤  =  𝑦  ↔  𝐵  =  𝑦 ) ) | 
						
							| 70 | 69 | imbi2d | ⊢ ( 𝑤  =  𝐵  →  ( ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 )  ↔  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) ) ) | 
						
							| 71 | 7 70 | imbi12d | ⊢ ( 𝑤  =  𝐵  →  ( ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) )  ↔  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) ) ) ) | 
						
							| 72 | 71 | imbi2d | ⊢ ( 𝑤  =  𝐵  →  ( ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) )  ↔  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝐵  =  𝑦 ) ) ) ) ) | 
						
							| 73 | 68 72 | imbitrrid | ⊢ ( 𝑤  =  𝐵  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) ) | 
						
							| 74 | 49 73 | jaoi | ⊢ ( ( 𝑤  =  𝐴  ∨  𝑤  =  𝐵 )  →  ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) ) | 
						
							| 75 | 74 | com3l | ⊢ ( ( 𝑦  =  𝐴  ∨  𝑦  =  𝐵 )  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( ( 𝑤  =  𝐴  ∨  𝑤  =  𝐵 )  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) ) | 
						
							| 76 | 17 75 | sylbi | ⊢ ( 𝑦  ∈  { 𝐴 ,  𝐵 }  →  ( { 𝐴 ,  𝑦 }  ∈  𝐸  →  ( ( 𝑤  =  𝐴  ∨  𝑤  =  𝐵 )  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) ) | 
						
							| 77 | 76 | imp | ⊢ ( ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 )  →  ( ( 𝑤  =  𝐴  ∨  𝑤  =  𝐵 )  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) | 
						
							| 78 | 77 | com3l | ⊢ ( ( 𝑤  =  𝐴  ∨  𝑤  =  𝐵 )  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 )  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) | 
						
							| 79 | 15 78 | sylbi | ⊢ ( 𝑤  ∈  { 𝐴 ,  𝐵 }  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  →  ( ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 )  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) ) ) | 
						
							| 80 | 79 | imp31 | ⊢ ( ( ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 ) )  →  ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  𝑤  =  𝑦 ) ) | 
						
							| 81 | 80 | com12 | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ( ( ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 ) )  →  𝑤  =  𝑦 ) ) | 
						
							| 82 | 81 | alrimivv | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ∀ 𝑤 ∀ 𝑦 ( ( ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 ) )  →  𝑤  =  𝑦 ) ) | 
						
							| 83 |  | eleq1w | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ↔  𝑦  ∈  { 𝐴 ,  𝐵 } ) ) | 
						
							| 84 |  | preq2 | ⊢ ( 𝑤  =  𝑦  →  { 𝐴 ,  𝑤 }  =  { 𝐴 ,  𝑦 } ) | 
						
							| 85 | 84 | eleq1d | ⊢ ( 𝑤  =  𝑦  →  ( { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  { 𝐴 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 86 | 83 85 | anbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ↔  ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 87 | 86 | eu4 | ⊢ ( ∃! 𝑤 ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ↔  ( ∃ 𝑤 ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ∧  ∀ 𝑤 ∀ 𝑦 ( ( ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 )  ∧  ( 𝑦  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑦 }  ∈  𝐸 ) )  →  𝑤  =  𝑦 ) ) ) | 
						
							| 88 | 13 82 87 | sylanbrc | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ∃! 𝑤 ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 89 |  | df-reu | ⊢ ( ∃! 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸  ↔  ∃! 𝑤 ( 𝑤  ∈  { 𝐴 ,  𝐵 }  ∧  { 𝐴 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 90 | 88 89 | sylibr | ⊢ ( ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  ∧  { 𝐴 ,  𝐵 }  ∈  𝐸 )  →  ∃! 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 91 | 90 | ex | ⊢ ( ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑌  ∧  𝐴  ≠  𝐵 )  ∧  ( 𝑉  =  { 𝐴 ,  𝐵 ,  𝐶 }  ∧  𝐺  ∈  USGraph ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  →  ∃! 𝑤  ∈  { 𝐴 ,  𝐵 } { 𝐴 ,  𝑤 }  ∈  𝐸 ) ) |