| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
⊢ 𝑆 = { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } |
| 2 |
|
zsqcl2 |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 ↑ 2 ) ∈ ℕ0 ) |
| 3 |
|
zsqcl2 |
⊢ ( 𝑦 ∈ ℤ → ( 𝑦 ↑ 2 ) ∈ ℕ0 ) |
| 4 |
|
nn0addcl |
⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℕ0 ∧ ( 𝑦 ↑ 2 ) ∈ ℕ0 ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) |
| 5 |
2 3 4
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ) |
| 6 |
|
zsqcl2 |
⊢ ( 𝑧 ∈ ℤ → ( 𝑧 ↑ 2 ) ∈ ℕ0 ) |
| 7 |
|
zsqcl2 |
⊢ ( 𝑤 ∈ ℤ → ( 𝑤 ↑ 2 ) ∈ ℕ0 ) |
| 8 |
|
nn0addcl |
⊢ ( ( ( 𝑧 ↑ 2 ) ∈ ℕ0 ∧ ( 𝑤 ↑ 2 ) ∈ ℕ0 ) → ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ∈ ℕ0 ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ∈ ℕ0 ) |
| 10 |
|
nn0addcl |
⊢ ( ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) ∈ ℕ0 ∧ ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ∈ ℕ0 ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ∈ ℕ0 ) |
| 11 |
5 9 10
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ∈ ℕ0 ) |
| 12 |
|
eleq1a |
⊢ ( ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) ∈ ℕ0 → ( 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ) ) → ( 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) ) |
| 14 |
13
|
rexlimdvva |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) ) |
| 15 |
14
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 16 |
15
|
abssi |
⊢ { 𝑛 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℤ 𝑛 = ( ( ( 𝑥 ↑ 2 ) + ( 𝑦 ↑ 2 ) ) + ( ( 𝑧 ↑ 2 ) + ( 𝑤 ↑ 2 ) ) ) } ⊆ ℕ0 |
| 17 |
1 16
|
eqsstri |
⊢ 𝑆 ⊆ ℕ0 |