Metamath Proof Explorer


Theorem aannenlem3

Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aannenlem.a 𝐻 = ( 𝑎 ∈ ℕ0 ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } )
Assertion aannenlem3 𝔸 ≈ ℕ

Proof

Step Hyp Ref Expression
1 aannenlem.a 𝐻 = ( 𝑎 ∈ ℕ0 ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } )
2 1 aannenlem2 𝔸 = ran 𝐻
3 omelon ω ∈ On
4 nn0ennn 0 ≈ ℕ
5 nnenom ℕ ≈ ω
6 4 5 entri 0 ≈ ω
7 6 ensymi ω ≈ ℕ0
8 isnumi ( ( ω ∈ On ∧ ω ≈ ℕ0 ) → ℕ0 ∈ dom card )
9 3 7 8 mp2an 0 ∈ dom card
10 cnex ℂ ∈ V
11 10 rabex { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐𝑏 ) = 0 } ∈ V
12 11 1 fnmpti 𝐻 Fn ℕ0
13 dffn4 ( 𝐻 Fn ℕ0𝐻 : ℕ0onto→ ran 𝐻 )
14 12 13 mpbi 𝐻 : ℕ0onto→ ran 𝐻
15 fodomnum ( ℕ0 ∈ dom card → ( 𝐻 : ℕ0onto→ ran 𝐻 → ran 𝐻 ≼ ℕ0 ) )
16 9 14 15 mp2 ran 𝐻 ≼ ℕ0
17 domentr ( ( ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω ) → ran 𝐻 ≼ ω )
18 16 6 17 mp2an ran 𝐻 ≼ ω
19 fvelrnb ( 𝐻 Fn ℕ0 → ( 𝑓 ∈ ran 𝐻 ↔ ∃ 𝑔 ∈ ℕ0 ( 𝐻𝑔 ) = 𝑓 ) )
20 12 19 ax-mp ( 𝑓 ∈ ran 𝐻 ↔ ∃ 𝑔 ∈ ℕ0 ( 𝐻𝑔 ) = 𝑓 )
21 1 aannenlem1 ( 𝑔 ∈ ℕ0 → ( 𝐻𝑔 ) ∈ Fin )
22 eleq1 ( ( 𝐻𝑔 ) = 𝑓 → ( ( 𝐻𝑔 ) ∈ Fin ↔ 𝑓 ∈ Fin ) )
23 21 22 syl5ibcom ( 𝑔 ∈ ℕ0 → ( ( 𝐻𝑔 ) = 𝑓𝑓 ∈ Fin ) )
24 23 rexlimiv ( ∃ 𝑔 ∈ ℕ0 ( 𝐻𝑔 ) = 𝑓𝑓 ∈ Fin )
25 20 24 sylbi ( 𝑓 ∈ ran 𝐻𝑓 ∈ Fin )
26 25 ssriv ran 𝐻 ⊆ Fin
27 aasscn 𝔸 ⊆ ℂ
28 2 27 eqsstrri ran 𝐻 ⊆ ℂ
29 soss ( ran 𝐻 ⊆ ℂ → ( 𝑓 Or ℂ → 𝑓 Or ran 𝐻 ) )
30 28 29 ax-mp ( 𝑓 Or ℂ → 𝑓 Or ran 𝐻 )
31 iunfictbso ( ( ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ran 𝐻 ) → ran 𝐻 ≼ ω )
32 18 26 30 31 mp3an12i ( 𝑓 Or ℂ → ran 𝐻 ≼ ω )
33 2 32 eqbrtrid ( 𝑓 Or ℂ → 𝔸 ≼ ω )
34 cnso 𝑓 𝑓 Or ℂ
35 33 34 exlimiiv 𝔸 ≼ ω
36 5 ensymi ω ≈ ℕ
37 domentr ( ( 𝔸 ≼ ω ∧ ω ≈ ℕ ) → 𝔸 ≼ ℕ )
38 35 36 37 mp2an 𝔸 ≼ ℕ
39 10 27 ssexi 𝔸 ∈ V
40 nnssq ℕ ⊆ ℚ
41 qssaa ℚ ⊆ 𝔸
42 40 41 sstri ℕ ⊆ 𝔸
43 ssdomg ( 𝔸 ∈ V → ( ℕ ⊆ 𝔸 → ℕ ≼ 𝔸 ) )
44 39 42 43 mp2 ℕ ≼ 𝔸
45 sbth ( ( 𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸 ) → 𝔸 ≈ ℕ )
46 38 44 45 mp2an 𝔸 ≈ ℕ