Step |
Hyp |
Ref |
Expression |
1 |
|
aannenlem.a |
⊢ 𝐻 = ( 𝑎 ∈ ℕ0 ↦ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ) |
2 |
1
|
aannenlem2 |
⊢ 𝔸 = ∪ ran 𝐻 |
3 |
|
omelon |
⊢ ω ∈ On |
4 |
|
nn0ennn |
⊢ ℕ0 ≈ ℕ |
5 |
|
nnenom |
⊢ ℕ ≈ ω |
6 |
4 5
|
entri |
⊢ ℕ0 ≈ ω |
7 |
6
|
ensymi |
⊢ ω ≈ ℕ0 |
8 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ0 ) → ℕ0 ∈ dom card ) |
9 |
3 7 8
|
mp2an |
⊢ ℕ0 ∈ dom card |
10 |
|
cnex |
⊢ ℂ ∈ V |
11 |
10
|
rabex |
⊢ { 𝑏 ∈ ℂ ∣ ∃ 𝑐 ∈ { 𝑑 ∈ ( Poly ‘ ℤ ) ∣ ( 𝑑 ≠ 0𝑝 ∧ ( deg ‘ 𝑑 ) ≤ 𝑎 ∧ ∀ 𝑒 ∈ ℕ0 ( abs ‘ ( ( coeff ‘ 𝑑 ) ‘ 𝑒 ) ) ≤ 𝑎 ) } ( 𝑐 ‘ 𝑏 ) = 0 } ∈ V |
12 |
11 1
|
fnmpti |
⊢ 𝐻 Fn ℕ0 |
13 |
|
dffn4 |
⊢ ( 𝐻 Fn ℕ0 ↔ 𝐻 : ℕ0 –onto→ ran 𝐻 ) |
14 |
12 13
|
mpbi |
⊢ 𝐻 : ℕ0 –onto→ ran 𝐻 |
15 |
|
fodomnum |
⊢ ( ℕ0 ∈ dom card → ( 𝐻 : ℕ0 –onto→ ran 𝐻 → ran 𝐻 ≼ ℕ0 ) ) |
16 |
9 14 15
|
mp2 |
⊢ ran 𝐻 ≼ ℕ0 |
17 |
|
domentr |
⊢ ( ( ran 𝐻 ≼ ℕ0 ∧ ℕ0 ≈ ω ) → ran 𝐻 ≼ ω ) |
18 |
16 6 17
|
mp2an |
⊢ ran 𝐻 ≼ ω |
19 |
|
fvelrnb |
⊢ ( 𝐻 Fn ℕ0 → ( 𝑓 ∈ ran 𝐻 ↔ ∃ 𝑔 ∈ ℕ0 ( 𝐻 ‘ 𝑔 ) = 𝑓 ) ) |
20 |
12 19
|
ax-mp |
⊢ ( 𝑓 ∈ ran 𝐻 ↔ ∃ 𝑔 ∈ ℕ0 ( 𝐻 ‘ 𝑔 ) = 𝑓 ) |
21 |
1
|
aannenlem1 |
⊢ ( 𝑔 ∈ ℕ0 → ( 𝐻 ‘ 𝑔 ) ∈ Fin ) |
22 |
|
eleq1 |
⊢ ( ( 𝐻 ‘ 𝑔 ) = 𝑓 → ( ( 𝐻 ‘ 𝑔 ) ∈ Fin ↔ 𝑓 ∈ Fin ) ) |
23 |
21 22
|
syl5ibcom |
⊢ ( 𝑔 ∈ ℕ0 → ( ( 𝐻 ‘ 𝑔 ) = 𝑓 → 𝑓 ∈ Fin ) ) |
24 |
23
|
rexlimiv |
⊢ ( ∃ 𝑔 ∈ ℕ0 ( 𝐻 ‘ 𝑔 ) = 𝑓 → 𝑓 ∈ Fin ) |
25 |
20 24
|
sylbi |
⊢ ( 𝑓 ∈ ran 𝐻 → 𝑓 ∈ Fin ) |
26 |
25
|
ssriv |
⊢ ran 𝐻 ⊆ Fin |
27 |
|
aasscn |
⊢ 𝔸 ⊆ ℂ |
28 |
2 27
|
eqsstrri |
⊢ ∪ ran 𝐻 ⊆ ℂ |
29 |
|
soss |
⊢ ( ∪ ran 𝐻 ⊆ ℂ → ( 𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻 ) ) |
30 |
28 29
|
ax-mp |
⊢ ( 𝑓 Or ℂ → 𝑓 Or ∪ ran 𝐻 ) |
31 |
|
iunfictbso |
⊢ ( ( ran 𝐻 ≼ ω ∧ ran 𝐻 ⊆ Fin ∧ 𝑓 Or ∪ ran 𝐻 ) → ∪ ran 𝐻 ≼ ω ) |
32 |
18 26 30 31
|
mp3an12i |
⊢ ( 𝑓 Or ℂ → ∪ ran 𝐻 ≼ ω ) |
33 |
2 32
|
eqbrtrid |
⊢ ( 𝑓 Or ℂ → 𝔸 ≼ ω ) |
34 |
|
cnso |
⊢ ∃ 𝑓 𝑓 Or ℂ |
35 |
33 34
|
exlimiiv |
⊢ 𝔸 ≼ ω |
36 |
5
|
ensymi |
⊢ ω ≈ ℕ |
37 |
|
domentr |
⊢ ( ( 𝔸 ≼ ω ∧ ω ≈ ℕ ) → 𝔸 ≼ ℕ ) |
38 |
35 36 37
|
mp2an |
⊢ 𝔸 ≼ ℕ |
39 |
10 27
|
ssexi |
⊢ 𝔸 ∈ V |
40 |
|
nnssq |
⊢ ℕ ⊆ ℚ |
41 |
|
qssaa |
⊢ ℚ ⊆ 𝔸 |
42 |
40 41
|
sstri |
⊢ ℕ ⊆ 𝔸 |
43 |
|
ssdomg |
⊢ ( 𝔸 ∈ V → ( ℕ ⊆ 𝔸 → ℕ ≼ 𝔸 ) ) |
44 |
39 42 43
|
mp2 |
⊢ ℕ ≼ 𝔸 |
45 |
|
sbth |
⊢ ( ( 𝔸 ≼ ℕ ∧ ℕ ≼ 𝔸 ) → 𝔸 ≈ ℕ ) |
46 |
38 44 45
|
mp2an |
⊢ 𝔸 ≈ ℕ |