| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ordom | ⊢ Ord  ω | 
						
							| 2 |  | ordelss | ⊢ ( ( Ord  ω  ∧  𝐴  ∈  ω )  →  𝐴  ⊆  ω ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  ω  →  𝐴  ⊆  ω ) | 
						
							| 4 | 3 | sspwd | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ⊆  𝒫  ω ) | 
						
							| 5 | 4 | sselda | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  𝑎  ∈  𝒫  ω ) | 
						
							| 6 |  | nnfi | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  Fin ) | 
						
							| 7 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝐴  →  𝑎  ⊆  𝐴 ) | 
						
							| 8 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑎  ⊆  𝐴 )  →  𝑎  ∈  Fin ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  𝑎  ∈  Fin ) | 
						
							| 10 | 5 9 | elind | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑎  ∈  𝒫  𝐴 )  →  𝑎  ∈  ( 𝒫  ω  ∩  Fin ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝐴  ∈  ω  →  ( 𝑎  ∈  𝒫  𝐴  →  𝑎  ∈  ( 𝒫  ω  ∩  Fin ) ) ) | 
						
							| 12 | 11 | ssrdv | ⊢ ( 𝐴  ∈  ω  →  𝒫  𝐴  ⊆  ( 𝒫  ω  ∩  Fin ) ) |