| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reval |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ℜ ‘ 𝐴 ) ) = ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) ) |
| 3 |
|
cjcl |
⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 5 |
3 4
|
mpdan |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 6 |
|
2cn |
⊢ 2 ∈ ℂ |
| 7 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 8 |
|
divcan2 |
⊢ ( ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) |
| 9 |
6 7 8
|
mp3an23 |
⊢ ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ∈ ℂ → ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) |
| 10 |
5 9
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) ) |
| 11 |
2 10
|
eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + ( ∗ ‘ 𝐴 ) ) = ( 2 · ( ℜ ‘ 𝐴 ) ) ) |