Metamath Proof Explorer


Theorem afv2elrn

Description: An alternate function value belongs to the range of the function, analogous to fvelrn . (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion afv2elrn ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )

Proof

Step Hyp Ref Expression
1 fundmdfat ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → 𝐹 defAt 𝐴 )
2 dfatafv2rnb ( 𝐹 defAt 𝐴 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )
3 1 2 sylib ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )