Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnafv |
⊢ ( 𝐹 Fn 𝐴 → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ''' 𝑥 ) } ) |
2 |
1
|
adantr |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ran 𝐹 = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ''' 𝑥 ) } ) |
3 |
2
|
eleq2d |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ∈ ran 𝐹 ↔ 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ''' 𝑥 ) } ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ( 𝐹 ''' 𝑥 ) ↔ 𝐵 = ( 𝐹 ''' 𝑥 ) ) ) |
5 |
|
eqcom |
⊢ ( 𝐵 = ( 𝐹 ''' 𝑥 ) ↔ ( 𝐹 ''' 𝑥 ) = 𝐵 ) |
6 |
4 5
|
bitrdi |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 = ( 𝐹 ''' 𝑥 ) ↔ ( 𝐹 ''' 𝑥 ) = 𝐵 ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ''' 𝑥 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝐵 ) ) |
8 |
7
|
elabg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ''' 𝑥 ) } ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝐵 ) ) |
9 |
8
|
adantl |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ∈ { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = ( 𝐹 ''' 𝑥 ) } ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝐵 ) ) |
10 |
3 9
|
bitrd |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 ∈ ran 𝐹 ↔ ∃ 𝑥 ∈ 𝐴 ( 𝐹 ''' 𝑥 ) = 𝐵 ) ) |