| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrnafv | ⊢ ( 𝐹  Fn  𝐴  →  ran  𝐹  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ''' 𝑥 ) } ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝑉 )  →  ran  𝐹  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ''' 𝑥 ) } ) | 
						
							| 3 | 2 | eleq2d | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵  ∈  ran  𝐹  ↔  𝐵  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ''' 𝑥 ) } ) ) | 
						
							| 4 |  | eqeq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =  ( 𝐹 ''' 𝑥 )  ↔  𝐵  =  ( 𝐹 ''' 𝑥 ) ) ) | 
						
							| 5 |  | eqcom | ⊢ ( 𝐵  =  ( 𝐹 ''' 𝑥 )  ↔  ( 𝐹 ''' 𝑥 )  =  𝐵 ) | 
						
							| 6 | 4 5 | bitrdi | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  =  ( 𝐹 ''' 𝑥 )  ↔  ( 𝐹 ''' 𝑥 )  =  𝐵 ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑦  =  𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ''' 𝑥 )  ↔  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝐵 ) ) | 
						
							| 8 | 7 | elabg | ⊢ ( 𝐵  ∈  𝑉  →  ( 𝐵  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ''' 𝑥 ) }  ↔  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝐵 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵  ∈  { 𝑦  ∣  ∃ 𝑥  ∈  𝐴 𝑦  =  ( 𝐹 ''' 𝑥 ) }  ↔  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝐵 ) ) | 
						
							| 10 | 3 9 | bitrd | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵  ∈  ran  𝐹  ↔  ∃ 𝑥  ∈  𝐴 ( 𝐹 ''' 𝑥 )  =  𝐵 ) ) |