| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnrnafv |  |-  ( F Fn A -> ran F = { y | E. x e. A y = ( F ''' x ) } ) | 
						
							| 2 | 1 | adantr |  |-  ( ( F Fn A /\ B e. V ) -> ran F = { y | E. x e. A y = ( F ''' x ) } ) | 
						
							| 3 | 2 | eleq2d |  |-  ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ''' x ) } ) ) | 
						
							| 4 |  | eqeq1 |  |-  ( y = B -> ( y = ( F ''' x ) <-> B = ( F ''' x ) ) ) | 
						
							| 5 |  | eqcom |  |-  ( B = ( F ''' x ) <-> ( F ''' x ) = B ) | 
						
							| 6 | 4 5 | bitrdi |  |-  ( y = B -> ( y = ( F ''' x ) <-> ( F ''' x ) = B ) ) | 
						
							| 7 | 6 | rexbidv |  |-  ( y = B -> ( E. x e. A y = ( F ''' x ) <-> E. x e. A ( F ''' x ) = B ) ) | 
						
							| 8 | 7 | elabg |  |-  ( B e. V -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( F Fn A /\ B e. V ) -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) ) | 
						
							| 10 | 3 9 | bitrd |  |-  ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> E. x e. A ( F ''' x ) = B ) ) |