Step |
Hyp |
Ref |
Expression |
1 |
|
fnrnafv |
|- ( F Fn A -> ran F = { y | E. x e. A y = ( F ''' x ) } ) |
2 |
1
|
adantr |
|- ( ( F Fn A /\ B e. V ) -> ran F = { y | E. x e. A y = ( F ''' x ) } ) |
3 |
2
|
eleq2d |
|- ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ''' x ) } ) ) |
4 |
|
eqeq1 |
|- ( y = B -> ( y = ( F ''' x ) <-> B = ( F ''' x ) ) ) |
5 |
|
eqcom |
|- ( B = ( F ''' x ) <-> ( F ''' x ) = B ) |
6 |
4 5
|
bitrdi |
|- ( y = B -> ( y = ( F ''' x ) <-> ( F ''' x ) = B ) ) |
7 |
6
|
rexbidv |
|- ( y = B -> ( E. x e. A y = ( F ''' x ) <-> E. x e. A ( F ''' x ) = B ) ) |
8 |
7
|
elabg |
|- ( B e. V -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) ) |
9 |
8
|
adantl |
|- ( ( F Fn A /\ B e. V ) -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) ) |
10 |
3 9
|
bitrd |
|- ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> E. x e. A ( F ''' x ) = B ) ) |