Metamath Proof Explorer


Theorem afvelrnb

Description: A member of a function's range is a value of the function, analogous to fvelrnb with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelrnb
|- ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> E. x e. A ( F ''' x ) = B ) )

Proof

Step Hyp Ref Expression
1 fnrnafv
 |-  ( F Fn A -> ran F = { y | E. x e. A y = ( F ''' x ) } )
2 1 adantr
 |-  ( ( F Fn A /\ B e. V ) -> ran F = { y | E. x e. A y = ( F ''' x ) } )
3 2 eleq2d
 |-  ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> B e. { y | E. x e. A y = ( F ''' x ) } ) )
4 eqeq1
 |-  ( y = B -> ( y = ( F ''' x ) <-> B = ( F ''' x ) ) )
5 eqcom
 |-  ( B = ( F ''' x ) <-> ( F ''' x ) = B )
6 4 5 bitrdi
 |-  ( y = B -> ( y = ( F ''' x ) <-> ( F ''' x ) = B ) )
7 6 rexbidv
 |-  ( y = B -> ( E. x e. A y = ( F ''' x ) <-> E. x e. A ( F ''' x ) = B ) )
8 7 elabg
 |-  ( B e. V -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) )
9 8 adantl
 |-  ( ( F Fn A /\ B e. V ) -> ( B e. { y | E. x e. A y = ( F ''' x ) } <-> E. x e. A ( F ''' x ) = B ) )
10 3 9 bitrd
 |-  ( ( F Fn A /\ B e. V ) -> ( B e. ran F <-> E. x e. A ( F ''' x ) = B ) )