| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rmo |
⊢ ( ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∃* 𝑦 ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ) |
| 2 |
|
cnvresrn |
⊢ ( ◡ 𝑅 ↾ ran 𝑅 ) = ◡ 𝑅 |
| 3 |
2
|
breqi |
⊢ ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ 𝑦 ◡ 𝑅 𝑥 ) |
| 4 |
|
brres |
⊢ ( 𝑥 ∈ V → ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) ) |
| 5 |
4
|
elv |
⊢ ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑦 ◡ 𝑅 𝑥 ) ) |
| 6 |
|
brcnvg |
⊢ ( ( 𝑦 ∈ V ∧ 𝑥 ∈ V ) → ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) ) |
| 7 |
6
|
el2v |
⊢ ( 𝑦 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑦 ) |
| 8 |
7
|
anbi2i |
⊢ ( ( 𝑦 ∈ ran 𝑅 ∧ 𝑦 ◡ 𝑅 𝑥 ) ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ) |
| 9 |
5 8
|
bitri |
⊢ ( 𝑦 ( ◡ 𝑅 ↾ ran 𝑅 ) 𝑥 ↔ ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ) |
| 10 |
3 9 7
|
3bitr3i |
⊢ ( ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ↔ 𝑥 𝑅 𝑦 ) |
| 11 |
10
|
mobii |
⊢ ( ∃* 𝑦 ( 𝑦 ∈ ran 𝑅 ∧ 𝑥 𝑅 𝑦 ) ↔ ∃* 𝑦 𝑥 𝑅 𝑦 ) |
| 12 |
1 11
|
bitri |
⊢ ( ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∃* 𝑦 𝑥 𝑅 𝑦 ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑥 ∃* 𝑦 ∈ ran 𝑅 𝑥 𝑅 𝑦 ↔ ∀ 𝑥 ∃* 𝑦 𝑥 𝑅 𝑦 ) |