Step |
Hyp |
Ref |
Expression |
1 |
|
df-rmo |
|- ( E* y e. ran R x R y <-> E* y ( y e. ran R /\ x R y ) ) |
2 |
|
cnvresrn |
|- ( `' R |` ran R ) = `' R |
3 |
2
|
breqi |
|- ( y ( `' R |` ran R ) x <-> y `' R x ) |
4 |
|
brres |
|- ( x e. _V -> ( y ( `' R |` ran R ) x <-> ( y e. ran R /\ y `' R x ) ) ) |
5 |
4
|
elv |
|- ( y ( `' R |` ran R ) x <-> ( y e. ran R /\ y `' R x ) ) |
6 |
|
brcnvg |
|- ( ( y e. _V /\ x e. _V ) -> ( y `' R x <-> x R y ) ) |
7 |
6
|
el2v |
|- ( y `' R x <-> x R y ) |
8 |
7
|
anbi2i |
|- ( ( y e. ran R /\ y `' R x ) <-> ( y e. ran R /\ x R y ) ) |
9 |
5 8
|
bitri |
|- ( y ( `' R |` ran R ) x <-> ( y e. ran R /\ x R y ) ) |
10 |
3 9 7
|
3bitr3i |
|- ( ( y e. ran R /\ x R y ) <-> x R y ) |
11 |
10
|
mobii |
|- ( E* y ( y e. ran R /\ x R y ) <-> E* y x R y ) |
12 |
1 11
|
bitri |
|- ( E* y e. ran R x R y <-> E* y x R y ) |
13 |
12
|
albii |
|- ( A. x E* y e. ran R x R y <-> A. x E* y x R y ) |