Metamath Proof Explorer


Theorem aovvfunressn

Description: If the operation value of a class for an argument is a set, the class restricted to the singleton of the argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovvfunressn ( (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 → Fun ( 𝐹 ↾ { ⟨ 𝐴 , 𝐵 ⟩ } ) )

Proof

Step Hyp Ref Expression
1 df-aov (( 𝐴 𝐹 𝐵 )) = ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ )
2 1 eleq1i ( (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 ↔ ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) ∈ 𝐶 )
3 afvvfunressn ( ( 𝐹 ''' ⟨ 𝐴 , 𝐵 ⟩ ) ∈ 𝐶 → Fun ( 𝐹 ↾ { ⟨ 𝐴 , 𝐵 ⟩ } ) )
4 2 3 sylbi ( (( 𝐴 𝐹 𝐵 )) ∈ 𝐶 → Fun ( 𝐹 ↾ { ⟨ 𝐴 , 𝐵 ⟩ } ) )