| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axacnd |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 2 |
|
df-an |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) ) |
| 3 |
2
|
albii |
⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ↔ ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) ) |
| 4 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑧 ∧ ( 𝑧 ∈ 𝑤 ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 5 |
|
annim |
⊢ ( ( 𝑧 ∈ 𝑤 ∧ ¬ ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ↔ ¬ ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) |
| 6 |
|
pm4.63 |
⊢ ( ¬ ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 7 |
6
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝑤 ∧ ¬ ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 8 |
5 7
|
bitr3i |
⊢ ( ¬ ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ↔ ( 𝑧 ∈ 𝑤 ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 9 |
8
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ ¬ ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑧 ∧ ( 𝑧 ∈ 𝑤 ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 10 |
|
annim |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ ¬ ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ↔ ¬ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) |
| 11 |
4 9 10
|
3bitr2i |
⊢ ( ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ¬ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) |
| 12 |
11
|
exbii |
⊢ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ¬ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) |
| 13 |
|
exnal |
⊢ ( ∃ 𝑤 ¬ ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ↔ ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) |
| 14 |
12 13
|
bitri |
⊢ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) |
| 15 |
14
|
bibi1i |
⊢ ( ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ↔ 𝑦 = 𝑤 ) ) |
| 16 |
|
dfbi1 |
⊢ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ↔ 𝑦 = 𝑤 ) ↔ ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |
| 17 |
15 16
|
bitri |
⊢ ( ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |
| 18 |
17
|
albii |
⊢ ( ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |
| 19 |
18
|
exbii |
⊢ ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |
| 20 |
|
df-ex |
⊢ ( ∃ 𝑤 ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ↔ ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |
| 21 |
19 20
|
bitri |
⊢ ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |
| 22 |
3 21
|
imbi12i |
⊢ ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) ) |
| 23 |
22
|
2albii |
⊢ ( ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) ) |
| 24 |
23
|
exbii |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) ) |
| 25 |
|
df-ex |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) ) |
| 26 |
24 25
|
bitri |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) ) |
| 27 |
1 26
|
mpbi |
⊢ ¬ ∀ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝑤 → ( 𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥 ) ) ) ) ) ) |