Metamath Proof Explorer


Theorem axacprim

Description: ax-ac without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010)

Ref Expression
Assertion axacprim ¬ ∀ 𝑥 ¬ ∀ 𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 axacnd 𝑥𝑦𝑧 ( ∀ 𝑥 ( 𝑦𝑧𝑧𝑤 ) → ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) )
2 df-an ( ( 𝑦𝑧𝑧𝑤 ) ↔ ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) )
3 2 albii ( ∀ 𝑥 ( 𝑦𝑧𝑧𝑤 ) ↔ ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) )
4 anass ( ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ ( 𝑦𝑧 ∧ ( 𝑧𝑤 ∧ ( 𝑦𝑤𝑤𝑥 ) ) ) )
5 annim ( ( 𝑧𝑤 ∧ ¬ ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ↔ ¬ ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) )
6 pm4.63 ( ¬ ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ↔ ( 𝑦𝑤𝑤𝑥 ) )
7 6 anbi2i ( ( 𝑧𝑤 ∧ ¬ ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ↔ ( 𝑧𝑤 ∧ ( 𝑦𝑤𝑤𝑥 ) ) )
8 5 7 bitr3i ( ¬ ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ↔ ( 𝑧𝑤 ∧ ( 𝑦𝑤𝑤𝑥 ) ) )
9 8 anbi2i ( ( 𝑦𝑧 ∧ ¬ ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ↔ ( 𝑦𝑧 ∧ ( 𝑧𝑤 ∧ ( 𝑦𝑤𝑤𝑥 ) ) ) )
10 annim ( ( 𝑦𝑧 ∧ ¬ ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ↔ ¬ ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) )
11 4 9 10 3bitr2i ( ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ ¬ ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) )
12 11 exbii ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ ∃ 𝑤 ¬ ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) )
13 exnal ( ∃ 𝑤 ¬ ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ↔ ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) )
14 12 13 bitri ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) )
15 14 bibi1i ( ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ↔ 𝑦 = 𝑤 ) )
16 dfbi1 ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ↔ 𝑦 = 𝑤 ) ↔ ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )
17 15 16 bitri ( ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )
18 17 albii ( ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )
19 18 exbii ( ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∃ 𝑤𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )
20 df-ex ( ∃ 𝑤𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ↔ ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )
21 19 20 bitri ( ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )
22 3 21 imbi12i ( ( ∀ 𝑥 ( 𝑦𝑧𝑧𝑤 ) → ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ) )
23 22 2albii ( ∀ 𝑦𝑧 ( ∀ 𝑥 ( 𝑦𝑧𝑧𝑤 ) → ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ) )
24 23 exbii ( ∃ 𝑥𝑦𝑧 ( ∀ 𝑥 ( 𝑦𝑧𝑧𝑤 ) → ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ) )
25 df-ex ( ∃ 𝑥𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ) )
26 24 25 bitri ( ∃ 𝑥𝑦𝑧 ( ∀ 𝑥 ( 𝑦𝑧𝑧𝑤 ) → ∃ 𝑤𝑦 ( ∃ 𝑤 ( ( 𝑦𝑧𝑧𝑤 ) ∧ ( 𝑦𝑤𝑤𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ¬ ∀ 𝑥 ¬ ∀ 𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) ) )
27 1 26 mpbi ¬ ∀ 𝑥 ¬ ∀ 𝑦𝑧 ( ∀ 𝑥 ¬ ( 𝑦𝑧 → ¬ 𝑧𝑤 ) → ¬ ∀ 𝑤 ¬ ∀ 𝑦 ¬ ( ( ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) → 𝑦 = 𝑤 ) → ¬ ( 𝑦 = 𝑤 → ¬ ∀ 𝑤 ( 𝑦𝑧 → ( 𝑧𝑤 → ( 𝑦𝑤 → ¬ 𝑤𝑥 ) ) ) ) ) )