| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axacndlem5 |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑥 |
| 3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑦 |
| 4 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑤 |
| 5 |
2 3 4
|
nf3an |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑥 |
| 7 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑦 |
| 8 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑤 |
| 9 |
6 7 8
|
nf3an |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 10 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 |
| 11 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
| 12 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑤 |
| 13 |
10 11 12
|
nf3an |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 14 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑦 ) |
| 15 |
14
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ) |
| 16 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑣 ) |
| 17 |
15 16
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ∈ 𝑣 ) |
| 18 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑤 → Ⅎ 𝑧 𝑤 ) |
| 19 |
18
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑤 ) |
| 20 |
16 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑣 ∈ 𝑤 ) |
| 21 |
17 20
|
nfand |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ) |
| 22 |
5 21
|
nfald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ) |
| 23 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑥 |
| 24 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑦 |
| 25 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑤 |
| 26 |
23 24 25
|
nf3an |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
| 27 |
15 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ∈ 𝑤 ) |
| 28 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ) |
| 29 |
28
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑥 ) |
| 30 |
19 29
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
| 31 |
27 30
|
nfand |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
| 32 |
21 31
|
nfand |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 33 |
26 32
|
nfexd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
| 34 |
15 19
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 = 𝑤 ) |
| 35 |
33 34
|
nfbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 36 |
9 35
|
nfald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 37 |
26 36
|
nfexd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
| 38 |
22 37
|
nfimd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 39 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑣 ) |
| 40 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑥 𝑧 ) |
| 41 |
40
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑧 ) |
| 42 |
39 41
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑣 = 𝑧 ) |
| 43 |
5 42
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
| 44 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → 𝑣 = 𝑧 ) |
| 45 |
44
|
eleq2d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑧 ) ) |
| 46 |
44
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
| 47 |
45 46
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 48 |
43 47
|
albid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
| 49 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑣 ) |
| 50 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑤 → Ⅎ 𝑤 𝑧 ) |
| 51 |
50
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑧 ) |
| 52 |
49 51
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑣 = 𝑧 ) |
| 53 |
26 52
|
nfan1 |
⊢ Ⅎ 𝑤 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
| 54 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑣 ) |
| 55 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑦 𝑧 ) |
| 56 |
55
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑧 ) |
| 57 |
54 56
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑣 = 𝑧 ) |
| 58 |
9 57
|
nfan1 |
⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
| 59 |
47
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 60 |
53 59
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
| 61 |
60
|
bibi1d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 62 |
58 61
|
albid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 63 |
53 62
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 64 |
48 63
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 65 |
64
|
ex |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( 𝑣 = 𝑧 → ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 66 |
13 38 65
|
cbvald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 67 |
9 66
|
albid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 68 |
5 67
|
exbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
| 69 |
1 68
|
mpbii |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 70 |
69
|
3exp |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ¬ ∀ 𝑧 𝑧 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
| 71 |
|
axacndlem2 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 72 |
71
|
aecoms |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 73 |
|
axacndlem3 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 74 |
73
|
aecoms |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 75 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑧 𝑧 = 𝑤 |
| 76 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ∈ 𝑤 ) |
| 77 |
76
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∀ 𝑥 𝑧 ∈ 𝑤 ) |
| 78 |
|
nd3 |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ¬ ∀ 𝑥 𝑧 ∈ 𝑤 ) |
| 79 |
78
|
pm2.21d |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ( ∀ 𝑥 𝑧 ∈ 𝑤 → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 80 |
77 79
|
syl5 |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 81 |
80
|
axc4i |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 82 |
75 81
|
alrimi |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 83 |
82
|
19.8ad |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
| 84 |
70 72 74 83
|
pm2.61iii |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |