Step |
Hyp |
Ref |
Expression |
1 |
|
axacndlem5 |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
2 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑥 |
3 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑦 |
4 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑧 𝑧 = 𝑤 |
5 |
2 3 4
|
nf3an |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
6 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑥 |
7 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑦 |
8 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑧 𝑧 = 𝑤 |
9 |
6 7 8
|
nf3an |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
10 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑥 |
11 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑦 |
12 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑧 𝑧 = 𝑤 |
13 |
10 11 12
|
nf3an |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
14 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑧 𝑦 ) |
15 |
14
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ) |
16 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑣 ) |
17 |
15 16
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ∈ 𝑣 ) |
18 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑤 → Ⅎ 𝑧 𝑤 ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑤 ) |
20 |
16 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑣 ∈ 𝑤 ) |
21 |
17 20
|
nfand |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ) |
22 |
5 21
|
nfald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ) |
23 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑥 |
24 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑦 |
25 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑧 𝑧 = 𝑤 |
26 |
23 24 25
|
nf3an |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) |
27 |
15 19
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 ∈ 𝑤 ) |
28 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑥 ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑥 ) |
30 |
19 29
|
nfeld |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) |
31 |
27 30
|
nfand |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) |
32 |
21 31
|
nfand |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
33 |
26 32
|
nfexd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) |
34 |
15 19
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 𝑦 = 𝑤 ) |
35 |
33 34
|
nfbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
36 |
9 35
|
nfald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
37 |
26 36
|
nfexd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |
38 |
22 37
|
nfimd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
39 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑣 ) |
40 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑥 𝑧 ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑧 ) |
42 |
39 41
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑥 𝑣 = 𝑧 ) |
43 |
5 42
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
44 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → 𝑣 = 𝑧 ) |
45 |
44
|
eleq2d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑧 ) ) |
46 |
44
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( 𝑣 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) ) |
47 |
45 46
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
48 |
43 47
|
albid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ↔ ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ) ) |
49 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑣 ) |
50 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑤 → Ⅎ 𝑤 𝑧 ) |
51 |
50
|
3ad2ant3 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑧 ) |
52 |
49 51
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑤 𝑣 = 𝑧 ) |
53 |
26 52
|
nfan1 |
⊢ Ⅎ 𝑤 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
54 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑣 ) |
55 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑦 → Ⅎ 𝑦 𝑧 ) |
56 |
55
|
3ad2ant2 |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑧 ) |
57 |
54 56
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → Ⅎ 𝑦 𝑣 = 𝑧 ) |
58 |
9 57
|
nfan1 |
⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) |
59 |
47
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
60 |
53 59
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ) ) |
61 |
60
|
bibi1d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
62 |
58 61
|
albid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
63 |
53 62
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ↔ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
64 |
48 63
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) ∧ 𝑣 = 𝑧 ) → ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
65 |
64
|
ex |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( 𝑣 = 𝑧 → ( ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
66 |
13 38 65
|
cbvald |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
67 |
9 66
|
albid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
68 |
5 67
|
exbid |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ( ∃ 𝑥 ∀ 𝑦 ∀ 𝑣 ( ∀ 𝑥 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ↔ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) |
69 |
1 68
|
mpbii |
⊢ ( ( ¬ ∀ 𝑧 𝑧 = 𝑥 ∧ ¬ ∀ 𝑧 𝑧 = 𝑦 ∧ ¬ ∀ 𝑧 𝑧 = 𝑤 ) → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
70 |
69
|
3exp |
⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ¬ ∀ 𝑧 𝑧 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) ) ) |
71 |
|
axacndlem2 |
⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
72 |
71
|
aecoms |
⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
73 |
|
axacndlem3 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
74 |
73
|
aecoms |
⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
75 |
|
nfae |
⊢ Ⅎ 𝑦 ∀ 𝑧 𝑧 = 𝑤 |
76 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → 𝑧 ∈ 𝑤 ) |
77 |
76
|
alimi |
⊢ ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∀ 𝑥 𝑧 ∈ 𝑤 ) |
78 |
|
nd3 |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ¬ ∀ 𝑥 𝑧 ∈ 𝑤 ) |
79 |
78
|
pm2.21d |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ( ∀ 𝑥 𝑧 ∈ 𝑤 → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
80 |
77 79
|
syl5 |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
81 |
80
|
axc4i |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
82 |
75 81
|
alrimi |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
83 |
82
|
19.8ad |
⊢ ( ∀ 𝑧 𝑧 = 𝑤 → ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) ) |
84 |
70 72 74 83
|
pm2.61iii |
⊢ ∃ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ∀ 𝑥 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) → ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤 ) ∧ ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ) ↔ 𝑦 = 𝑤 ) ) |