| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-c16 | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 ) ) | 
						
							| 2 | 1 | alrimiv | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∀ 𝑤 ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 ) ) | 
						
							| 3 | 2 | axc4i-o | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∀ 𝑥 ∀ 𝑤 ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 ) ) | 
						
							| 4 |  | equequ1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  𝑤  ↔  𝑧  =  𝑤 ) ) | 
						
							| 5 | 4 | cbvalvw | ⊢ ( ∀ 𝑥 𝑥  =  𝑤  ↔  ∀ 𝑧 𝑧  =  𝑤 ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑥 𝑥  =  𝑤  ↔  ∀ 𝑧 𝑧  =  𝑤 ) ) | 
						
							| 7 | 4 6 | imbi12d | ⊢ ( 𝑥  =  𝑧  →  ( ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 )  ↔  ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 ) ) ) | 
						
							| 8 | 7 | albidv | ⊢ ( 𝑥  =  𝑧  →  ( ∀ 𝑤 ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 )  ↔  ∀ 𝑤 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 ) ) ) | 
						
							| 9 | 8 | cbvalvw | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 )  ↔  ∀ 𝑧 ∀ 𝑤 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 ) ) | 
						
							| 10 | 9 | biimpi | ⊢ ( ∀ 𝑥 ∀ 𝑤 ( 𝑥  =  𝑤  →  ∀ 𝑥 𝑥  =  𝑤 )  →  ∀ 𝑧 ∀ 𝑤 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 ) ) | 
						
							| 11 |  | nfa1-o | ⊢ Ⅎ 𝑧 ∀ 𝑧 𝑧  =  𝑤 | 
						
							| 12 | 11 | 19.23 | ⊢ ( ∀ 𝑧 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  ↔  ( ∃ 𝑧 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 ) ) | 
						
							| 13 | 12 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  ↔  ∀ 𝑤 ( ∃ 𝑧 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 ) ) | 
						
							| 14 |  | ax6ev | ⊢ ∃ 𝑧 𝑧  =  𝑤 | 
						
							| 15 |  | pm2.27 | ⊢ ( ∃ 𝑧 𝑧  =  𝑤  →  ( ( ∃ 𝑧 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  ∀ 𝑧 𝑧  =  𝑤 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( ( ∃ 𝑧 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  ∀ 𝑧 𝑧  =  𝑤 ) | 
						
							| 17 | 16 | alimi | ⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  ∀ 𝑤 ∀ 𝑧 𝑧  =  𝑤 ) | 
						
							| 18 |  | equequ2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑧  =  𝑤  ↔  𝑧  =  𝑥 ) ) | 
						
							| 19 | 18 | spv | ⊢ ( ∀ 𝑤 𝑧  =  𝑤  →  𝑧  =  𝑥 ) | 
						
							| 20 | 19 | sps-o | ⊢ ( ∀ 𝑧 ∀ 𝑤 𝑧  =  𝑤  →  𝑧  =  𝑥 ) | 
						
							| 21 | 20 | alcoms | ⊢ ( ∀ 𝑤 ∀ 𝑧 𝑧  =  𝑤  →  𝑧  =  𝑥 ) | 
						
							| 22 | 17 21 | syl | ⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  𝑧  =  𝑥 ) | 
						
							| 23 | 13 22 | sylbi | ⊢ ( ∀ 𝑤 ∀ 𝑧 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  𝑧  =  𝑥 ) | 
						
							| 24 | 23 | alcoms | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  𝑧  =  𝑥 ) | 
						
							| 25 | 24 | axc4i-o | ⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝑧  =  𝑤  →  ∀ 𝑧 𝑧  =  𝑤 )  →  ∀ 𝑧 𝑧  =  𝑥 ) | 
						
							| 26 | 3 10 25 | 3syl | ⊢ ( ∀ 𝑥 𝑥  =  𝑧  →  ∀ 𝑧 𝑧  =  𝑥 ) |