Metamath Proof Explorer


Theorem axhis4-zf

Description: Derive Axiom ax-his4 from Hilbert space under ZF set theory. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
axhil.2 𝑈 ∈ CHilOLD
axhfi.1 ·ih = ( ·𝑖OLD𝑈 )
Assertion axhis4-zf ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )

Proof

Step Hyp Ref Expression
1 axhil.1 𝑈 = ⟨ ⟨ + , · ⟩ , norm
2 axhil.2 𝑈 ∈ CHilOLD
3 axhfi.1 ·ih = ( ·𝑖OLD𝑈 )
4 df-hba ℋ = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
5 1 fveq2i ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
6 4 5 eqtr4i ℋ = ( BaseSet ‘ 𝑈 )
7 df-h0v 0 = ( 0vec ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
8 1 fveq2i ( 0vec𝑈 ) = ( 0vec ‘ ⟨ ⟨ + , · ⟩ , norm ⟩ )
9 7 8 eqtr4i 0 = ( 0vec𝑈 )
10 6 9 3 hlipgt0 ( ( 𝑈 ∈ CHilOLD𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )
11 2 10 mp3an1 ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 ·ih 𝐴 ) )