| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axhil.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | axhil.2 |  |-  U e. CHilOLD | 
						
							| 3 |  | axhfi.1 |  |-  .ih = ( .iOLD ` U ) | 
						
							| 4 |  | df-hba |  |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 5 | 1 | fveq2i |  |-  ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 6 | 4 5 | eqtr4i |  |-  ~H = ( BaseSet ` U ) | 
						
							| 7 |  | df-h0v |  |-  0h = ( 0vec ` <. <. +h , .h >. , normh >. ) | 
						
							| 8 | 1 | fveq2i |  |-  ( 0vec ` U ) = ( 0vec ` <. <. +h , .h >. , normh >. ) | 
						
							| 9 | 7 8 | eqtr4i |  |-  0h = ( 0vec ` U ) | 
						
							| 10 | 6 9 3 | hlipgt0 |  |-  ( ( U e. CHilOLD /\ A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) | 
						
							| 11 | 2 10 | mp3an1 |  |-  ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |