| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axhil.1 |  |-  U = <. <. +h , .h >. , normh >. | 
						
							| 2 |  | axhil.2 |  |-  U e. CHilOLD | 
						
							| 3 |  | simpl |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> F e. ( Cau ` ( IndMet ` U ) ) ) | 
						
							| 4 |  | eqid |  |-  ( IndMet ` U ) = ( IndMet ` U ) | 
						
							| 5 |  | eqid |  |-  ( MetOpen ` ( IndMet ` U ) ) = ( MetOpen ` ( IndMet ` U ) ) | 
						
							| 6 | 4 5 | hlcompl |  |-  ( ( U e. CHilOLD /\ F e. ( Cau ` ( IndMet ` U ) ) ) -> F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) | 
						
							| 7 | 2 3 6 | sylancr |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) | 
						
							| 8 |  | eldm2g |  |-  ( F e. ( Cau ` ( IndMet ` U ) ) -> ( F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) <-> E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) <-> E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) ) | 
						
							| 10 | 7 9 | mpbid |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) | 
						
							| 11 |  | df-br |  |-  ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x <-> <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) | 
						
							| 12 | 2 | hlnvi |  |-  U e. NrmCVec | 
						
							| 13 |  | df-hba |  |-  ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 14 | 1 | fveq2i |  |-  ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) | 
						
							| 15 | 13 14 | eqtr4i |  |-  ~H = ( BaseSet ` U ) | 
						
							| 16 | 15 4 | imsxmet |  |-  ( U e. NrmCVec -> ( IndMet ` U ) e. ( *Met ` ~H ) ) | 
						
							| 17 | 5 | mopntopon |  |-  ( ( IndMet ` U ) e. ( *Met ` ~H ) -> ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` ~H ) ) | 
						
							| 18 | 12 16 17 | mp2b |  |-  ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` ~H ) | 
						
							| 19 |  | lmcl |  |-  ( ( ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` ~H ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) -> x e. ~H ) | 
						
							| 20 | 18 19 | mpan |  |-  ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> x e. ~H ) | 
						
							| 21 | 20 | a1i |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> x e. ~H ) ) | 
						
							| 22 | 1 12 15 4 5 | h2hlm |  |-  ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) | 
						
							| 23 | 22 | breqi |  |-  ( F ~~>v x <-> F ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) x ) | 
						
							| 24 |  | brres |  |-  ( x e. _V -> ( F ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) ) | 
						
							| 25 | 24 | elv |  |-  ( F ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) | 
						
							| 26 | 23 25 | bitri |  |-  ( F ~~>v x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) | 
						
							| 27 | 26 | baib |  |-  ( F e. ( ~H ^m NN ) -> ( F ~~>v x <-> F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ~~>v x <-> F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) | 
						
							| 29 | 28 | biimprd |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> F ~~>v x ) ) | 
						
							| 30 | 21 29 | jcad |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> ( x e. ~H /\ F ~~>v x ) ) ) | 
						
							| 31 | 11 30 | biimtrrid |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) -> ( x e. ~H /\ F ~~>v x ) ) ) | 
						
							| 32 | 31 | eximdv |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) -> E. x ( x e. ~H /\ F ~~>v x ) ) ) | 
						
							| 33 | 10 32 | mpd |  |-  ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> E. x ( x e. ~H /\ F ~~>v x ) ) | 
						
							| 34 |  | elin |  |-  ( F e. ( ( Cau ` ( IndMet ` U ) ) i^i ( ~H ^m NN ) ) <-> ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) ) | 
						
							| 35 |  | df-rex |  |-  ( E. x e. ~H F ~~>v x <-> E. x ( x e. ~H /\ F ~~>v x ) ) | 
						
							| 36 | 33 34 35 | 3imtr4i |  |-  ( F e. ( ( Cau ` ( IndMet ` U ) ) i^i ( ~H ^m NN ) ) -> E. x e. ~H F ~~>v x ) | 
						
							| 37 | 1 12 15 4 | h2hcau |  |-  Cauchy = ( ( Cau ` ( IndMet ` U ) ) i^i ( ~H ^m NN ) ) | 
						
							| 38 | 36 37 | eleq2s |  |-  ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |