Step |
Hyp |
Ref |
Expression |
1 |
|
axhil.1 |
|- U = <. <. +h , .h >. , normh >. |
2 |
|
axhil.2 |
|- U e. CHilOLD |
3 |
|
simpl |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> F e. ( Cau ` ( IndMet ` U ) ) ) |
4 |
|
eqid |
|- ( IndMet ` U ) = ( IndMet ` U ) |
5 |
|
eqid |
|- ( MetOpen ` ( IndMet ` U ) ) = ( MetOpen ` ( IndMet ` U ) ) |
6 |
4 5
|
hlcompl |
|- ( ( U e. CHilOLD /\ F e. ( Cau ` ( IndMet ` U ) ) ) -> F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) |
7 |
2 3 6
|
sylancr |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) |
8 |
|
eldm2g |
|- ( F e. ( Cau ` ( IndMet ` U ) ) -> ( F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) <-> E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) ) |
9 |
8
|
adantr |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F e. dom ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) <-> E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) ) |
10 |
7 9
|
mpbid |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) |
11 |
|
df-br |
|- ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x <-> <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) ) |
12 |
2
|
hlnvi |
|- U e. NrmCVec |
13 |
|
df-hba |
|- ~H = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
14 |
1
|
fveq2i |
|- ( BaseSet ` U ) = ( BaseSet ` <. <. +h , .h >. , normh >. ) |
15 |
13 14
|
eqtr4i |
|- ~H = ( BaseSet ` U ) |
16 |
15 4
|
imsxmet |
|- ( U e. NrmCVec -> ( IndMet ` U ) e. ( *Met ` ~H ) ) |
17 |
5
|
mopntopon |
|- ( ( IndMet ` U ) e. ( *Met ` ~H ) -> ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` ~H ) ) |
18 |
12 16 17
|
mp2b |
|- ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` ~H ) |
19 |
|
lmcl |
|- ( ( ( MetOpen ` ( IndMet ` U ) ) e. ( TopOn ` ~H ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) -> x e. ~H ) |
20 |
18 19
|
mpan |
|- ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> x e. ~H ) |
21 |
20
|
a1i |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> x e. ~H ) ) |
22 |
1 12 15 4 5
|
h2hlm |
|- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) |
23 |
22
|
breqi |
|- ( F ~~>v x <-> F ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) x ) |
24 |
|
brres |
|- ( x e. _V -> ( F ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) ) |
25 |
24
|
elv |
|- ( F ( ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) |` ( ~H ^m NN ) ) x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) |
26 |
23 25
|
bitri |
|- ( F ~~>v x <-> ( F e. ( ~H ^m NN ) /\ F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) |
27 |
26
|
baib |
|- ( F e. ( ~H ^m NN ) -> ( F ~~>v x <-> F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) |
28 |
27
|
adantl |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ~~>v x <-> F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x ) ) |
29 |
28
|
biimprd |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> F ~~>v x ) ) |
30 |
21 29
|
jcad |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( F ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) x -> ( x e. ~H /\ F ~~>v x ) ) ) |
31 |
11 30
|
syl5bir |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) -> ( x e. ~H /\ F ~~>v x ) ) ) |
32 |
31
|
eximdv |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> ( E. x <. F , x >. e. ( ~~>t ` ( MetOpen ` ( IndMet ` U ) ) ) -> E. x ( x e. ~H /\ F ~~>v x ) ) ) |
33 |
10 32
|
mpd |
|- ( ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) -> E. x ( x e. ~H /\ F ~~>v x ) ) |
34 |
|
elin |
|- ( F e. ( ( Cau ` ( IndMet ` U ) ) i^i ( ~H ^m NN ) ) <-> ( F e. ( Cau ` ( IndMet ` U ) ) /\ F e. ( ~H ^m NN ) ) ) |
35 |
|
df-rex |
|- ( E. x e. ~H F ~~>v x <-> E. x ( x e. ~H /\ F ~~>v x ) ) |
36 |
33 34 35
|
3imtr4i |
|- ( F e. ( ( Cau ` ( IndMet ` U ) ) i^i ( ~H ^m NN ) ) -> E. x e. ~H F ~~>v x ) |
37 |
1 12 15 4
|
h2hcau |
|- Cauchy = ( ( Cau ` ( IndMet ` U ) ) i^i ( ~H ^m NN ) ) |
38 |
36 37
|
eleq2s |
|- ( F e. Cauchy -> E. x e. ~H F ~~>v x ) |