Metamath Proof Explorer


Theorem axhcompl-zf

Description: Derive Axiom ax-hcompl from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)

Ref Expression
Hypotheses axhil.1 U=+norm
axhil.2 UCHilOLD
Assertion axhcompl-zf FCauchyxFvx

Proof

Step Hyp Ref Expression
1 axhil.1 U=+norm
2 axhil.2 UCHilOLD
3 simpl FCauIndMetUFFCauIndMetU
4 eqid IndMetU=IndMetU
5 eqid MetOpenIndMetU=MetOpenIndMetU
6 4 5 hlcompl UCHilOLDFCauIndMetUFdomtMetOpenIndMetU
7 2 3 6 sylancr FCauIndMetUFFdomtMetOpenIndMetU
8 eldm2g FCauIndMetUFdomtMetOpenIndMetUxFxtMetOpenIndMetU
9 8 adantr FCauIndMetUFFdomtMetOpenIndMetUxFxtMetOpenIndMetU
10 7 9 mpbid FCauIndMetUFxFxtMetOpenIndMetU
11 df-br FtMetOpenIndMetUxFxtMetOpenIndMetU
12 2 hlnvi UNrmCVec
13 df-hba =BaseSet+norm
14 1 fveq2i BaseSetU=BaseSet+norm
15 13 14 eqtr4i =BaseSetU
16 15 4 imsxmet UNrmCVecIndMetU∞Met
17 5 mopntopon IndMetU∞MetMetOpenIndMetUTopOn
18 12 16 17 mp2b MetOpenIndMetUTopOn
19 lmcl MetOpenIndMetUTopOnFtMetOpenIndMetUxx
20 18 19 mpan FtMetOpenIndMetUxx
21 20 a1i FCauIndMetUFFtMetOpenIndMetUxx
22 1 12 15 4 5 h2hlm v=tMetOpenIndMetU
23 22 breqi FvxFtMetOpenIndMetUx
24 brres xVFtMetOpenIndMetUxFFtMetOpenIndMetUx
25 24 elv FtMetOpenIndMetUxFFtMetOpenIndMetUx
26 23 25 bitri FvxFFtMetOpenIndMetUx
27 26 baib FFvxFtMetOpenIndMetUx
28 27 adantl FCauIndMetUFFvxFtMetOpenIndMetUx
29 28 biimprd FCauIndMetUFFtMetOpenIndMetUxFvx
30 21 29 jcad FCauIndMetUFFtMetOpenIndMetUxxFvx
31 11 30 biimtrrid FCauIndMetUFFxtMetOpenIndMetUxFvx
32 31 eximdv FCauIndMetUFxFxtMetOpenIndMetUxxFvx
33 10 32 mpd FCauIndMetUFxxFvx
34 elin FCauIndMetUFCauIndMetUF
35 df-rex xFvxxxFvx
36 33 34 35 3imtr4i FCauIndMetUxFvx
37 1 12 15 4 h2hcau Cauchy=CauIndMetU
38 36 37 eleq2s FCauchyxFvx