Description: Derive Axiom ax-hcompl from Hilbert space under ZF set theory. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 13-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | axhil.1 | |
|
axhil.2 | |
||
Assertion | axhcompl-zf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axhil.1 | |
|
2 | axhil.2 | |
|
3 | simpl | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | hlcompl | |
7 | 2 3 6 | sylancr | |
8 | eldm2g | |
|
9 | 8 | adantr | |
10 | 7 9 | mpbid | |
11 | df-br | |
|
12 | 2 | hlnvi | |
13 | df-hba | |
|
14 | 1 | fveq2i | |
15 | 13 14 | eqtr4i | |
16 | 15 4 | imsxmet | |
17 | 5 | mopntopon | |
18 | 12 16 17 | mp2b | |
19 | lmcl | |
|
20 | 18 19 | mpan | |
21 | 20 | a1i | |
22 | 1 12 15 4 5 | h2hlm | |
23 | 22 | breqi | |
24 | brres | |
|
25 | 24 | elv | |
26 | 23 25 | bitri | |
27 | 26 | baib | |
28 | 27 | adantl | |
29 | 28 | biimprd | |
30 | 21 29 | jcad | |
31 | 11 30 | biimtrrid | |
32 | 31 | eximdv | |
33 | 10 32 | mpd | |
34 | elin | |
|
35 | df-rex | |
|
36 | 33 34 35 | 3imtr4i | |
37 | 1 12 15 4 | h2hcau | |
38 | 36 37 | eleq2s | |