Step |
Hyp |
Ref |
Expression |
1 |
|
axinfnd |
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
2 |
|
df-an |
⊢ ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) |
3 |
2
|
exbii |
⊢ ( ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) |
4 |
|
exnal |
⊢ ( ∃ 𝑧 ¬ ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ↔ ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) |
5 |
3 4
|
bitri |
⊢ ( ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) |
6 |
5
|
imbi2i |
⊢ ( ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) |
8 |
7
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) |
9 |
|
df-an |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ↔ ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) |
10 |
8 9
|
bitri |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) |
11 |
10
|
imbi2i |
⊢ ( ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( 𝑦 ∈ 𝑧 → ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) ) |
12 |
11
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) ) |
13 |
|
df-ex |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ¬ ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) ) |
14 |
12 13
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ¬ ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) ) |
15 |
1 14
|
mpbi |
⊢ ¬ ∀ 𝑥 ¬ ( 𝑦 ∈ 𝑧 → ¬ ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ ∀ 𝑧 ( 𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥 ) ) ) ) |