| Step |
Hyp |
Ref |
Expression |
| 1 |
|
axinfndlem1 |
⊢ ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 2 |
1
|
ax-gen |
⊢ ∀ 𝑤 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 3 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 4 |
|
nfnae |
⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 5 |
3 4
|
nfan |
⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 6 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 7 |
|
nfnae |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 8 |
6 7
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 9 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) |
| 10 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
| 11 |
10
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
| 12 |
9 11
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑧 ) |
| 13 |
8 12
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑥 𝑤 ∈ 𝑧 ) |
| 14 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
| 15 |
14
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 16 |
9 15
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 17 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 18 |
|
nfnae |
⊢ Ⅎ 𝑤 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 19 |
17 18
|
nfan |
⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 20 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 |
| 21 |
|
nfnae |
⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 22 |
20 21
|
nfan |
⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 23 |
11 15
|
nfeld |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ∈ 𝑥 ) |
| 24 |
12 23
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
| 25 |
22 24
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) |
| 26 |
16 25
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 27 |
19 26
|
nfald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 28 |
16 27
|
nfand |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 29 |
8 28
|
nfexd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 30 |
13 29
|
nfimd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 31 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) |
| 32 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) |
| 33 |
32
|
adantr |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 34 |
31 33
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 ) |
| 35 |
8 34
|
nfan1 |
⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 36 |
|
simpr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → 𝑤 = 𝑦 ) |
| 37 |
36
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) |
| 38 |
35 37
|
albid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 𝑤 ∈ 𝑧 ↔ ∀ 𝑥 𝑦 ∈ 𝑧 ) ) |
| 39 |
36
|
eleq1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 40 |
|
nfcvd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) |
| 41 |
|
nfcvf2 |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) |
| 42 |
41
|
adantl |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
| 43 |
40 42
|
nfeqd |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 ) |
| 44 |
22 43
|
nfan1 |
⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 45 |
37
|
anbi1d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 46 |
44 45
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ↔ ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) |
| 47 |
39 46
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 48 |
47
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 49 |
5 26 48
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 50 |
49
|
adantr |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 51 |
39 50
|
anbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 52 |
35 51
|
exbid |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 53 |
38 52
|
imbi12d |
⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
| 54 |
53
|
ex |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) ) |
| 55 |
5 30 54
|
cbvald |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 𝑤 ∈ 𝑧 → ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑤 ( 𝑤 ∈ 𝑥 → ∃ 𝑧 ( 𝑤 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ↔ ∀ 𝑦 ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
| 56 |
2 55
|
mpbii |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 57 |
56
|
19.21bi |
⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 58 |
57
|
ex |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) ) |
| 59 |
|
nd1 |
⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
| 60 |
59
|
aecoms |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
| 61 |
60
|
pm2.21d |
⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 62 |
|
nd3 |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑥 𝑦 ∈ 𝑧 ) |
| 63 |
62
|
pm2.21d |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) ) |
| 64 |
58 61 63
|
pm2.61ii |
⊢ ( ∀ 𝑥 𝑦 ∈ 𝑧 → ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |
| 65 |
64
|
19.35ri |
⊢ ∃ 𝑥 ( 𝑦 ∈ 𝑧 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ∃ 𝑧 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥 ) ) ) ) |