Metamath Proof Explorer


Theorem axinfndlem1

Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002)

Ref Expression
Assertion axinfndlem1 ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 zfinf 𝑤 ( 𝑦𝑤 ∧ ∀ 𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) )
2 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦
3 nfnae 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧
4 2 3 nfan 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
5 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑥 𝑦 )
6 5 adantr ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑦 )
7 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑤 )
8 6 7 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦𝑤 )
9 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦
10 nfnae 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧
11 9 10 nfan 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
12 nfnae 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦
13 nfnae 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧
14 12 13 nfan 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 )
15 nfcvf ( ¬ ∀ 𝑥 𝑥 = 𝑧 𝑥 𝑧 )
16 15 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑥 𝑧 )
17 6 16 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦𝑧 )
18 16 7 nfeld ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧𝑤 )
19 17 18 nfand ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦𝑧𝑧𝑤 ) )
20 14 19 nfexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥𝑧 ( 𝑦𝑧𝑧𝑤 ) )
21 8 20 nfimd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) )
22 11 21 nfald ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) )
23 8 22 nfand ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦𝑤 ∧ ∀ 𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) ) )
24 simpr ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → 𝑤 = 𝑥 )
25 24 eleq2d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦𝑤𝑦𝑥 ) )
26 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑦 𝑤 )
27 nfcvf2 ( ¬ ∀ 𝑥 𝑥 = 𝑦 𝑦 𝑥 )
28 27 adantr ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑦 𝑥 )
29 26 28 nfeqd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 )
30 11 29 nfan1 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 )
31 nfcvd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑧 𝑤 )
32 nfcvf2 ( ¬ ∀ 𝑥 𝑥 = 𝑧 𝑧 𝑥 )
33 32 adantl ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → 𝑧 𝑥 )
34 31 33 nfeqd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑥 )
35 14 34 nfan1 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 )
36 elequ2 ( 𝑤 = 𝑥 → ( 𝑧𝑤𝑧𝑥 ) )
37 36 anbi2d ( 𝑤 = 𝑥 → ( ( 𝑦𝑧𝑧𝑤 ) ↔ ( 𝑦𝑧𝑧𝑥 ) ) )
38 37 adantl ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑦𝑧𝑧𝑤 ) ↔ ( 𝑦𝑧𝑧𝑥 ) ) )
39 35 38 exbid ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ↔ ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) )
40 25 39 imbi12d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) ↔ ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
41 30 40 albid ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) ↔ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
42 25 41 anbi12d ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑦𝑤 ∧ ∀ 𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) ) ↔ ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
43 42 ex ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑦𝑤 ∧ ∀ 𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) ) ↔ ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) ) )
44 4 23 43 cbvexd ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑦𝑤 ∧ ∀ 𝑦 ( 𝑦𝑤 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑤 ) ) ) ↔ ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
45 1 44 mpbii ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )
46 45 a1d ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
47 46 ex ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) ) )
48 nd1 ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑥 𝑦𝑧 )
49 48 pm2.21d ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
50 nd2 ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑥 𝑦𝑧 )
51 50 pm2.21d ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) ) )
52 47 49 51 pm2.61ii ( ∀ 𝑥 𝑦𝑧 → ∃ 𝑥 ( 𝑦𝑥 ∧ ∀ 𝑦 ( 𝑦𝑥 → ∃ 𝑧 ( 𝑦𝑧𝑧𝑥 ) ) ) )