Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | axinfndlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfinf | |
|
2 | nfnae | |
|
3 | nfnae | |
|
4 | 2 3 | nfan | |
5 | nfcvf | |
|
6 | 5 | adantr | |
7 | nfcvd | |
|
8 | 6 7 | nfeld | |
9 | nfnae | |
|
10 | nfnae | |
|
11 | 9 10 | nfan | |
12 | nfnae | |
|
13 | nfnae | |
|
14 | 12 13 | nfan | |
15 | nfcvf | |
|
16 | 15 | adantl | |
17 | 6 16 | nfeld | |
18 | 16 7 | nfeld | |
19 | 17 18 | nfand | |
20 | 14 19 | nfexd | |
21 | 8 20 | nfimd | |
22 | 11 21 | nfald | |
23 | 8 22 | nfand | |
24 | simpr | |
|
25 | 24 | eleq2d | |
26 | nfcvd | |
|
27 | nfcvf2 | |
|
28 | 27 | adantr | |
29 | 26 28 | nfeqd | |
30 | 11 29 | nfan1 | |
31 | nfcvd | |
|
32 | nfcvf2 | |
|
33 | 32 | adantl | |
34 | 31 33 | nfeqd | |
35 | 14 34 | nfan1 | |
36 | elequ2 | |
|
37 | 36 | anbi2d | |
38 | 37 | adantl | |
39 | 35 38 | exbid | |
40 | 25 39 | imbi12d | |
41 | 30 40 | albid | |
42 | 25 41 | anbi12d | |
43 | 42 | ex | |
44 | 4 23 43 | cbvexd | |
45 | 1 44 | mpbii | |
46 | 45 | a1d | |
47 | 46 | ex | |
48 | nd1 | |
|
49 | 48 | pm2.21d | |
50 | nd2 | |
|
51 | 50 | pm2.21d | |
52 | 47 49 51 | pm2.61ii | |