Metamath Proof Explorer


Theorem axinfndlem1

Description: Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002)

Ref Expression
Assertion axinfndlem1 xyzxyxyyxzyzzx

Proof

Step Hyp Ref Expression
1 zfinf wywyywzyzzw
2 nfnae x¬xx=y
3 nfnae x¬xx=z
4 2 3 nfan x¬xx=y¬xx=z
5 nfcvf ¬xx=y_xy
6 5 adantr ¬xx=y¬xx=z_xy
7 nfcvd ¬xx=y¬xx=z_xw
8 6 7 nfeld ¬xx=y¬xx=zxyw
9 nfnae y¬xx=y
10 nfnae y¬xx=z
11 9 10 nfan y¬xx=y¬xx=z
12 nfnae z¬xx=y
13 nfnae z¬xx=z
14 12 13 nfan z¬xx=y¬xx=z
15 nfcvf ¬xx=z_xz
16 15 adantl ¬xx=y¬xx=z_xz
17 6 16 nfeld ¬xx=y¬xx=zxyz
18 16 7 nfeld ¬xx=y¬xx=zxzw
19 17 18 nfand ¬xx=y¬xx=zxyzzw
20 14 19 nfexd ¬xx=y¬xx=zxzyzzw
21 8 20 nfimd ¬xx=y¬xx=zxywzyzzw
22 11 21 nfald ¬xx=y¬xx=zxyywzyzzw
23 8 22 nfand ¬xx=y¬xx=zxywyywzyzzw
24 simpr ¬xx=y¬xx=zw=xw=x
25 24 eleq2d ¬xx=y¬xx=zw=xywyx
26 nfcvd ¬xx=y¬xx=z_yw
27 nfcvf2 ¬xx=y_yx
28 27 adantr ¬xx=y¬xx=z_yx
29 26 28 nfeqd ¬xx=y¬xx=zyw=x
30 11 29 nfan1 y¬xx=y¬xx=zw=x
31 nfcvd ¬xx=y¬xx=z_zw
32 nfcvf2 ¬xx=z_zx
33 32 adantl ¬xx=y¬xx=z_zx
34 31 33 nfeqd ¬xx=y¬xx=zzw=x
35 14 34 nfan1 z¬xx=y¬xx=zw=x
36 elequ2 w=xzwzx
37 36 anbi2d w=xyzzwyzzx
38 37 adantl ¬xx=y¬xx=zw=xyzzwyzzx
39 35 38 exbid ¬xx=y¬xx=zw=xzyzzwzyzzx
40 25 39 imbi12d ¬xx=y¬xx=zw=xywzyzzwyxzyzzx
41 30 40 albid ¬xx=y¬xx=zw=xyywzyzzwyyxzyzzx
42 25 41 anbi12d ¬xx=y¬xx=zw=xywyywzyzzwyxyyxzyzzx
43 42 ex ¬xx=y¬xx=zw=xywyywzyzzwyxyyxzyzzx
44 4 23 43 cbvexd ¬xx=y¬xx=zwywyywzyzzwxyxyyxzyzzx
45 1 44 mpbii ¬xx=y¬xx=zxyxyyxzyzzx
46 45 a1d ¬xx=y¬xx=zxyzxyxyyxzyzzx
47 46 ex ¬xx=y¬xx=zxyzxyxyyxzyzzx
48 nd1 xx=y¬xyz
49 48 pm2.21d xx=yxyzxyxyyxzyzzx
50 nd2 xx=z¬xyz
51 50 pm2.21d xx=zxyzxyxyyxzyzzx
52 47 49 51 pm2.61ii xyzxyxyyxzyzzx