| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcnqs |
⊢ ℂ = ( ( R × R ) / ◡ E ) |
| 2 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 𝑧 , 𝑤 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E ) |
| 3 |
|
mulcnsrec |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 𝑧 , 𝑤 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ] ◡ E ) |
| 4 |
|
mulcnsrec |
⊢ ( ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( [ 〈 ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) , ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) 〉 ] ◡ E · [ 〈 𝑣 , 𝑢 〉 ] ◡ E ) = [ 〈 ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) , ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) 〉 ] ◡ E ) |
| 5 |
|
mulcnsrec |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) ) → ( [ 〈 𝑥 , 𝑦 〉 ] ◡ E · [ 〈 ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) , ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) 〉 ] ◡ E ) = [ 〈 ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) , ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) 〉 ] ◡ E ) |
| 6 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑥 ·R 𝑧 ) ∈ R ) |
| 7 |
|
m1r |
⊢ -1R ∈ R |
| 8 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑦 ·R 𝑤 ) ∈ R ) |
| 9 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑦 ·R 𝑤 ) ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
| 10 |
7 8 9
|
sylancr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) → ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) |
| 11 |
|
addclsr |
⊢ ( ( ( 𝑥 ·R 𝑧 ) ∈ R ∧ ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ∈ R ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 12 |
6 10 11
|
syl2an |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑧 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 13 |
12
|
an4s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ) |
| 14 |
|
mulclsr |
⊢ ( ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) → ( 𝑦 ·R 𝑧 ) ∈ R ) |
| 15 |
|
mulclsr |
⊢ ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) → ( 𝑥 ·R 𝑤 ) ∈ R ) |
| 16 |
|
addclsr |
⊢ ( ( ( 𝑦 ·R 𝑧 ) ∈ R ∧ ( 𝑥 ·R 𝑤 ) ∈ R ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 17 |
14 15 16
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑦 ∈ R ∧ 𝑧 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 18 |
17
|
an42s |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) |
| 19 |
13 18
|
jca |
⊢ ( ( ( 𝑥 ∈ R ∧ 𝑦 ∈ R ) ∧ ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ) → ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ∈ R ∧ ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ∈ R ) ) |
| 20 |
|
mulclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑧 ·R 𝑣 ) ∈ R ) |
| 21 |
|
mulclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑤 ·R 𝑢 ) ∈ R ) |
| 22 |
|
mulclsr |
⊢ ( ( -1R ∈ R ∧ ( 𝑤 ·R 𝑢 ) ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
| 23 |
7 21 22
|
sylancr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) → ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) |
| 24 |
|
addclsr |
⊢ ( ( ( 𝑧 ·R 𝑣 ) ∈ R ∧ ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ∈ R ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
| 25 |
20 23 24
|
syl2an |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑣 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
| 26 |
25
|
an4s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ) |
| 27 |
|
mulclsr |
⊢ ( ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) → ( 𝑤 ·R 𝑣 ) ∈ R ) |
| 28 |
|
mulclsr |
⊢ ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) → ( 𝑧 ·R 𝑢 ) ∈ R ) |
| 29 |
|
addclsr |
⊢ ( ( ( 𝑤 ·R 𝑣 ) ∈ R ∧ ( 𝑧 ·R 𝑢 ) ∈ R ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
| 30 |
27 28 29
|
syl2anr |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑢 ∈ R ) ∧ ( 𝑤 ∈ R ∧ 𝑣 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
| 31 |
30
|
an42s |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) |
| 32 |
26 31
|
jca |
⊢ ( ( ( 𝑧 ∈ R ∧ 𝑤 ∈ R ) ∧ ( 𝑣 ∈ R ∧ 𝑢 ∈ R ) ) → ( ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ R ∧ ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ∈ R ) ) |
| 33 |
|
ovex |
⊢ ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) ∈ V |
| 34 |
|
ovex |
⊢ ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ V |
| 35 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ∈ V |
| 36 |
|
addcomsr |
⊢ ( 𝑓 +R 𝑔 ) = ( 𝑔 +R 𝑓 ) |
| 37 |
|
addasssr |
⊢ ( ( 𝑓 +R 𝑔 ) +R ℎ ) = ( 𝑓 +R ( 𝑔 +R ℎ ) ) |
| 38 |
|
ovex |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ∈ V |
| 39 |
33 34 35 36 37 38
|
caov42 |
⊢ ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 40 |
|
distrsr |
⊢ ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 41 |
|
distrsr |
⊢ ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) = ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) |
| 42 |
41
|
oveq2i |
⊢ ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( -1R ·R ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 43 |
|
distrsr |
⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 44 |
42 43
|
eqtri |
⊢ ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 45 |
40 44
|
oveq12i |
⊢ ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) ) ) |
| 46 |
|
vex |
⊢ 𝑥 ∈ V |
| 47 |
7
|
elexi |
⊢ -1R ∈ V |
| 48 |
|
vex |
⊢ 𝑧 ∈ V |
| 49 |
|
mulcomsr |
⊢ ( 𝑓 ·R 𝑔 ) = ( 𝑔 ·R 𝑓 ) |
| 50 |
|
distrsr |
⊢ ( 𝑓 ·R ( 𝑔 +R ℎ ) ) = ( ( 𝑓 ·R 𝑔 ) +R ( 𝑓 ·R ℎ ) ) |
| 51 |
|
ovex |
⊢ ( 𝑦 ·R 𝑤 ) ∈ V |
| 52 |
|
vex |
⊢ 𝑣 ∈ V |
| 53 |
|
mulasssr |
⊢ ( ( 𝑓 ·R 𝑔 ) ·R ℎ ) = ( 𝑓 ·R ( 𝑔 ·R ℎ ) ) |
| 54 |
46 47 48 49 50 51 52 53
|
caovdilem |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) ) |
| 55 |
|
mulasssr |
⊢ ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) = ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) |
| 56 |
55
|
oveq2i |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) = ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) |
| 57 |
56
|
oveq2i |
⊢ ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑣 ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) |
| 58 |
54 57
|
eqtri |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) |
| 59 |
|
vex |
⊢ 𝑦 ∈ V |
| 60 |
|
vex |
⊢ 𝑤 ∈ V |
| 61 |
|
vex |
⊢ 𝑢 ∈ V |
| 62 |
59 46 48 49 50 60 61 53
|
caovdilem |
⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 63 |
62
|
oveq2i |
⊢ ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) = ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 64 |
|
distrsr |
⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 65 |
|
ovex |
⊢ ( 𝑤 ·R 𝑢 ) ∈ V |
| 66 |
47 46 65 49 53
|
caov12 |
⊢ ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) = ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 67 |
66
|
oveq2i |
⊢ ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( -1R ·R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 68 |
64 67
|
eqtri |
⊢ ( -1R ·R ( ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 69 |
63 68
|
eqtri |
⊢ ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) = ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 70 |
58 69
|
oveq12i |
⊢ ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) = ( ( ( 𝑥 ·R ( 𝑧 ·R 𝑣 ) ) +R ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑣 ) ) ) ) +R ( ( -1R ·R ( 𝑦 ·R ( 𝑧 ·R 𝑢 ) ) ) +R ( 𝑥 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 71 |
39 45 70
|
3eqtr4ri |
⊢ ( ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑣 ) +R ( -1R ·R ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( -1R ·R ( 𝑦 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) ) |
| 72 |
|
ovex |
⊢ ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) ∈ V |
| 73 |
|
ovex |
⊢ ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ∈ V |
| 74 |
|
ovex |
⊢ ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ∈ V |
| 75 |
|
ovex |
⊢ ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ∈ V |
| 76 |
72 73 74 36 37 75
|
caov42 |
⊢ ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 77 |
|
distrsr |
⊢ ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 78 |
|
distrsr |
⊢ ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) |
| 79 |
77 78
|
oveq12i |
⊢ ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 80 |
59 46 48 49 50 60 52 53
|
caovdilem |
⊢ ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) = ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) |
| 81 |
46 47 48 49 50 51 61 53
|
caovdilem |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) ) |
| 82 |
|
mulasssr |
⊢ ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) = ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) |
| 83 |
82
|
oveq2i |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) = ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 84 |
47 59 65 49 53
|
caov12 |
⊢ ( -1R ·R ( 𝑦 ·R ( 𝑤 ·R 𝑢 ) ) ) = ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 85 |
83 84
|
eqtri |
⊢ ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) = ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) |
| 86 |
85
|
oveq2i |
⊢ ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( -1R ·R ( ( 𝑦 ·R 𝑤 ) ·R 𝑢 ) ) ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 87 |
81 86
|
eqtri |
⊢ ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) = ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) |
| 88 |
80 87
|
oveq12i |
⊢ ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) = ( ( ( 𝑦 ·R ( 𝑧 ·R 𝑣 ) ) +R ( 𝑥 ·R ( 𝑤 ·R 𝑣 ) ) ) +R ( ( 𝑥 ·R ( 𝑧 ·R 𝑢 ) ) +R ( 𝑦 ·R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) ) |
| 89 |
76 79 88
|
3eqtr4ri |
⊢ ( ( ( ( 𝑦 ·R 𝑧 ) +R ( 𝑥 ·R 𝑤 ) ) ·R 𝑣 ) +R ( ( ( 𝑥 ·R 𝑧 ) +R ( -1R ·R ( 𝑦 ·R 𝑤 ) ) ) ·R 𝑢 ) ) = ( ( 𝑦 ·R ( ( 𝑧 ·R 𝑣 ) +R ( -1R ·R ( 𝑤 ·R 𝑢 ) ) ) ) +R ( 𝑥 ·R ( ( 𝑤 ·R 𝑣 ) +R ( 𝑧 ·R 𝑢 ) ) ) ) |
| 90 |
1 2 3 4 5 19 32 71 89
|
ecovass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · 𝐶 ) = ( 𝐴 · ( 𝐵 · 𝐶 ) ) ) |