Step |
Hyp |
Ref |
Expression |
1 |
|
axregnd |
⊢ ( 𝑥 ∈ 𝑦 → ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
2 |
|
df-an |
⊢ ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ¬ ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
3 |
2
|
exbii |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
4 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
5 |
3 4
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |
6 |
1 5
|
sylib |
⊢ ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → ¬ ∀ 𝑧 ( 𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦 ) ) ) |