Metamath Proof Explorer


Theorem axregprim

Description: ax-reg without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010)

Ref Expression
Assertion axregprim ( 𝑥𝑦 → ¬ ∀ 𝑥 ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 axregnd ( 𝑥𝑦 → ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
2 df-an ( ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ↔ ¬ ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
3 2 exbii ( ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ↔ ∃ 𝑥 ¬ ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
4 exnal ( ∃ 𝑥 ¬ ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
5 3 4 bitri ( ∃ 𝑥 ( 𝑥𝑦 ∧ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) ↔ ¬ ∀ 𝑥 ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )
6 1 5 sylib ( 𝑥𝑦 → ¬ ∀ 𝑥 ( 𝑥𝑦 → ¬ ∀ 𝑧 ( 𝑧𝑥 → ¬ 𝑧𝑦 ) ) )