| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axregnd | ⊢ ( 𝑥  ∈  𝑦  →  ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 2 |  | df-an | ⊢ ( ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ¬  ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 3 | 2 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ∃ 𝑥 ¬  ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 4 |  | exnal | ⊢ ( ∃ 𝑥 ¬  ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ¬  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 5 | 3 4 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝑦  ∧  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) )  ↔  ¬  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) | 
						
							| 6 | 1 5 | sylib | ⊢ ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑥 ( 𝑥  ∈  𝑦  →  ¬  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  ¬  𝑧  ∈  𝑦 ) ) ) |