| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zfregs2 |
⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ → ¬ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) |
| 2 |
|
abn0 |
⊢ ( { 𝑥 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 ) |
| 3 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 4 |
3
|
notbii |
⊢ ( ¬ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 5 |
|
exnal |
⊢ ( ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 6 |
|
annim |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∧ ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ↔ ¬ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ) |
| 7 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 8 |
|
sb6 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ) |
| 10 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 11 |
|
sb6 |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) |
| 13 |
12
|
anbi2ci |
⊢ ( ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) |
| 14 |
|
df-an |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ↔ ¬ ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) |
| 15 |
13 14
|
bitri |
⊢ ( ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ¬ ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) |
| 16 |
15
|
con2bii |
⊢ ( ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ↔ ¬ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) |
| 17 |
16
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ↔ ∀ 𝑧 ¬ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) |
| 18 |
|
alnex |
⊢ ( ∀ 𝑧 ¬ ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) |
| 19 |
17 18
|
bitr2i |
⊢ ( ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) |
| 20 |
9 19
|
anbi12i |
⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∧ ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) ) |
| 21 |
6 20
|
bitr3i |
⊢ ( ¬ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) ) |
| 22 |
21
|
exbii |
⊢ ( ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ) ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) ) |
| 23 |
4 5 22
|
3bitr2i |
⊢ ( ¬ ∀ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥 ∣ 𝜑 } ∧ 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) ) |
| 24 |
1 2 23
|
3imtr3i |
⊢ ( ∃ 𝑥 𝜑 → ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∀ 𝑧 ( 𝑧 ∈ 𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧 → 𝜑 ) ) ) ) |