Metamath Proof Explorer


Theorem axregs

Description: Derivation of ax-regs from the axioms of ZF set theory. (Contributed by BTernaryTau, 29-Dec-2025)

Ref Expression
Assertion axregs ( ∃ 𝑥 𝜑 → ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ) )

Proof

Step Hyp Ref Expression
1 zfregs2 ( { 𝑥𝜑 } ≠ ∅ → ¬ ∀ 𝑦 ∈ { 𝑥𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) )
2 abn0 ( { 𝑥𝜑 } ≠ ∅ ↔ ∃ 𝑥 𝜑 )
3 df-ral ( ∀ 𝑦 ∈ { 𝑥𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) )
4 3 notbii ( ¬ ∀ 𝑦 ∈ { 𝑥𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) )
5 exnal ( ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) )
6 annim ( ( 𝑦 ∈ { 𝑥𝜑 } ∧ ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) ↔ ¬ ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) )
7 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
8 sb6 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
9 7 8 bitri ( 𝑦 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) )
10 df-clab ( 𝑧 ∈ { 𝑥𝜑 } ↔ [ 𝑧 / 𝑥 ] 𝜑 )
11 sb6 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) )
12 10 11 bitri ( 𝑧 ∈ { 𝑥𝜑 } ↔ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) )
13 12 anbi2ci ( ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ( 𝑧𝑦 ∧ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) )
14 df-an ( ( 𝑧𝑦 ∧ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ↔ ¬ ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) )
15 13 14 bitri ( ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ¬ ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) )
16 15 con2bii ( ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ↔ ¬ ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) )
17 16 albii ( ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ↔ ∀ 𝑧 ¬ ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) )
18 alnex ( ∀ 𝑧 ¬ ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) )
19 17 18 bitr2i ( ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) )
20 9 19 anbi12i ( ( 𝑦 ∈ { 𝑥𝜑 } ∧ ¬ ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ) )
21 6 20 bitr3i ( ¬ ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ) )
22 21 exbii ( ∃ 𝑦 ¬ ( 𝑦 ∈ { 𝑥𝜑 } → ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ) ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ) )
23 4 5 22 3bitr2i ( ¬ ∀ 𝑦 ∈ { 𝑥𝜑 } ∃ 𝑧 ( 𝑧 ∈ { 𝑥𝜑 } ∧ 𝑧𝑦 ) ↔ ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ) )
24 1 2 23 3imtr3i ( ∃ 𝑥 𝜑 → ∃ 𝑦 ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∧ ∀ 𝑧 ( 𝑧𝑦 → ¬ ∀ 𝑥 ( 𝑥 = 𝑧𝜑 ) ) ) )