| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfv |
⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 |
| 2 |
|
nfvd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
| 3 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) |
| 4 |
3
|
nfcrd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑥 ∈ 𝑧 ) |
| 5 |
|
nfvd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝜑 ) |
| 6 |
4 5
|
nfand |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 7 |
2 6
|
nfbid |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 8 |
1 7
|
nfald |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 9 |
|
nfvd |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑤 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 10 |
|
elequ2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
| 11 |
10
|
bibi1d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 12 |
11
|
biimpd |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 13 |
12
|
alimdv |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 14 |
13
|
a1i |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) ) |
| 15 |
|
elequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) |
| 16 |
15
|
anbi1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) |
| 17 |
16
|
bibi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ↔ ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 18 |
17
|
biimpd |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 19 |
18
|
alimdv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 20 |
19
|
sps |
⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) ) ) |
| 21 |
|
ax-sep |
⊢ ∃ 𝑤 ∀ 𝑥 ( 𝑥 ∈ 𝑤 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |
| 22 |
|
ax-nul |
⊢ ∃ 𝑦 ∀ 𝑥 ¬ 𝑥 ∈ 𝑦 |
| 23 |
|
id |
⊢ ( ¬ 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ 𝑦 ) |
| 24 |
23
|
bianfd |
⊢ ( ¬ 𝑥 ∈ 𝑦 → ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
| 25 |
24
|
alimi |
⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑦 → ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
| 26 |
22 25
|
eximii |
⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) |
| 27 |
8 9 14 20 21 26
|
dvelimexcasei |
⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝑦 ↔ ( 𝑥 ∈ 𝑧 ∧ 𝜑 ) ) |