| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfv | ⊢ Ⅎ 𝑥 ¬  ∀ 𝑦 𝑦  =  𝑧 | 
						
							| 2 |  | nfvd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑥  ∈  𝑤 ) | 
						
							| 3 |  | nfcvf | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑧 ) | 
						
							| 4 | 3 | nfcrd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝑥  ∈  𝑧 ) | 
						
							| 5 |  | nfvd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 𝜑 ) | 
						
							| 6 | 4 5 | nfand | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) | 
						
							| 7 | 2 6 | nfbid | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) | 
						
							| 8 | 1 7 | nfald | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) | 
						
							| 9 |  | nfvd | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  Ⅎ 𝑤 ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) | 
						
							| 10 |  | elequ2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑥  ∈  𝑤  ↔  𝑥  ∈  𝑦 ) ) | 
						
							| 11 | 10 | bibi1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 12 | 11 | biimpd | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 13 | 12 | alimdv | ⊢ ( 𝑤  =  𝑦  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( ¬  ∀ 𝑦 𝑦  =  𝑧  →  ( 𝑤  =  𝑦  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) ) | 
						
							| 15 |  | elequ2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  ∈  𝑦  ↔  𝑥  ∈  𝑧 ) ) | 
						
							| 16 | 15 | anbi1d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑥  ∈  𝑦  ∧  𝜑 )  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) | 
						
							| 17 | 16 | bibi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  ↔  ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 18 | 17 | biimpd | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 19 | 18 | alimdv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 20 | 19 | sps | ⊢ ( ∀ 𝑦 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) ) ) | 
						
							| 21 |  | ax-sep | ⊢ ∃ 𝑤 ∀ 𝑥 ( 𝑥  ∈  𝑤  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) | 
						
							| 22 |  | ax-sep | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑣  ∧  ⊥ ) ) | 
						
							| 23 |  | fal | ⊢ ¬  ⊥ | 
						
							| 24 | 23 | intnan | ⊢ ¬  ( 𝑥  ∈  𝑣  ∧  ⊥ ) | 
						
							| 25 |  | biimp | ⊢ ( ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑣  ∧  ⊥ ) )  →  ( 𝑥  ∈  𝑦  →  ( 𝑥  ∈  𝑣  ∧  ⊥ ) ) ) | 
						
							| 26 | 24 25 | mtoi | ⊢ ( ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑣  ∧  ⊥ ) )  →  ¬  𝑥  ∈  𝑦 ) | 
						
							| 27 | 26 | bianfd | ⊢ ( ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑣  ∧  ⊥ ) )  →  ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 28 | 27 | alimi | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑣  ∧  ⊥ ) )  →  ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) ) | 
						
							| 29 | 22 28 | eximii | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑦  ∧  𝜑 ) ) | 
						
							| 30 | 8 9 14 20 21 29 | dvelimexcasei | ⊢ ∃ 𝑦 ∀ 𝑥 ( 𝑥  ∈  𝑦  ↔  ( 𝑥  ∈  𝑧  ∧  𝜑 ) ) |