Metamath Proof Explorer


Theorem axsepg2ALT

Description: Alternate proof of axsepg2 , derived directly from ax-sep with no additional set theory axioms. (Contributed by BTernaryTau, 3-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axsepg2ALT 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧
2 nfvd ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑥𝑤 )
3 nfcvf ( ¬ ∀ 𝑦 𝑦 = 𝑧 𝑦 𝑧 )
4 3 nfcrd ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑥𝑧 )
5 nfvd ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝜑 )
6 4 5 nfand ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ( 𝑥𝑧𝜑 ) )
7 2 6 nfbid ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) ) )
8 1 7 nfald ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦𝑥 ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) ) )
9 nfvd ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑤𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) )
10 elequ2 ( 𝑤 = 𝑦 → ( 𝑥𝑤𝑥𝑦 ) )
11 10 bibi1d ( 𝑤 = 𝑦 → ( ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) ) ↔ ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
12 11 biimpd ( 𝑤 = 𝑦 → ( ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) ) → ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
13 12 alimdv ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) ) → ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
14 13 a1i ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑦 → ( ∀ 𝑥 ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) ) → ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) ) )
15 elequ2 ( 𝑦 = 𝑧 → ( 𝑥𝑦𝑥𝑧 ) )
16 15 anbi1d ( 𝑦 = 𝑧 → ( ( 𝑥𝑦𝜑 ) ↔ ( 𝑥𝑧𝜑 ) ) )
17 16 bibi2d ( 𝑦 = 𝑧 → ( ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) ) ↔ ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
18 17 biimpd ( 𝑦 = 𝑧 → ( ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) ) → ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
19 18 alimdv ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) ) → ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
20 19 sps ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) ) → ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) ) ) )
21 ax-sep 𝑤𝑥 ( 𝑥𝑤 ↔ ( 𝑥𝑧𝜑 ) )
22 ax-sep 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑣 ∧ ⊥ ) )
23 fal ¬ ⊥
24 23 intnan ¬ ( 𝑥𝑣 ∧ ⊥ )
25 biimp ( ( 𝑥𝑦 ↔ ( 𝑥𝑣 ∧ ⊥ ) ) → ( 𝑥𝑦 → ( 𝑥𝑣 ∧ ⊥ ) ) )
26 24 25 mtoi ( ( 𝑥𝑦 ↔ ( 𝑥𝑣 ∧ ⊥ ) ) → ¬ 𝑥𝑦 )
27 26 bianfd ( ( 𝑥𝑦 ↔ ( 𝑥𝑣 ∧ ⊥ ) ) → ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) ) )
28 27 alimi ( ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑣 ∧ ⊥ ) ) → ∀ 𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) ) )
29 22 28 eximii 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑦𝜑 ) )
30 8 9 14 20 21 29 dvelimexcasei 𝑦𝑥 ( 𝑥𝑦 ↔ ( 𝑥𝑧𝜑 ) )