Metamath Proof Explorer


Theorem basis2

Description: Property of a basis. (Contributed by NM, 17-Jul-2006)

Ref Expression
Assertion basis2 ( ( ( 𝐵 ∈ TopBases ∧ 𝐶𝐵 ) ∧ ( 𝐷𝐵𝐴 ∈ ( 𝐶𝐷 ) ) ) → ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 isbasis2g ( 𝐵 ∈ TopBases → ( 𝐵 ∈ TopBases ↔ ∀ 𝑦𝐵𝑧𝐵𝑤 ∈ ( 𝑦𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) ) )
2 1 ibi ( 𝐵 ∈ TopBases → ∀ 𝑦𝐵𝑧𝐵𝑤 ∈ ( 𝑦𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) )
3 ineq1 ( 𝑦 = 𝐶 → ( 𝑦𝑧 ) = ( 𝐶𝑧 ) )
4 sseq2 ( ( 𝑦𝑧 ) = ( 𝐶𝑧 ) → ( 𝑥 ⊆ ( 𝑦𝑧 ) ↔ 𝑥 ⊆ ( 𝐶𝑧 ) ) )
5 4 anbi2d ( ( 𝑦𝑧 ) = ( 𝐶𝑧 ) → ( ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) ↔ ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ) )
6 5 rexbidv ( ( 𝑦𝑧 ) = ( 𝐶𝑧 ) → ( ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) ↔ ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ) )
7 6 raleqbi1dv ( ( 𝑦𝑧 ) = ( 𝐶𝑧 ) → ( ∀ 𝑤 ∈ ( 𝑦𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ) )
8 3 7 syl ( 𝑦 = 𝐶 → ( ∀ 𝑤 ∈ ( 𝑦𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ) )
9 ineq2 ( 𝑧 = 𝐷 → ( 𝐶𝑧 ) = ( 𝐶𝐷 ) )
10 sseq2 ( ( 𝐶𝑧 ) = ( 𝐶𝐷 ) → ( 𝑥 ⊆ ( 𝐶𝑧 ) ↔ 𝑥 ⊆ ( 𝐶𝐷 ) ) )
11 10 anbi2d ( ( 𝐶𝑧 ) = ( 𝐶𝐷 ) → ( ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ↔ ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
12 11 rexbidv ( ( 𝐶𝑧 ) = ( 𝐶𝐷 ) → ( ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ↔ ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
13 12 raleqbi1dv ( ( 𝐶𝑧 ) = ( 𝐶𝐷 ) → ( ∀ 𝑤 ∈ ( 𝐶𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶𝐷 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
14 9 13 syl ( 𝑧 = 𝐷 → ( ∀ 𝑤 ∈ ( 𝐶𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝑧 ) ) ↔ ∀ 𝑤 ∈ ( 𝐶𝐷 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
15 8 14 rspc2v ( ( 𝐶𝐵𝐷𝐵 ) → ( ∀ 𝑦𝐵𝑧𝐵𝑤 ∈ ( 𝑦𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) → ∀ 𝑤 ∈ ( 𝐶𝐷 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
16 eleq1 ( 𝑤 = 𝐴 → ( 𝑤𝑥𝐴𝑥 ) )
17 16 anbi1d ( 𝑤 = 𝐴 → ( ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ↔ ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
18 17 rexbidv ( 𝑤 = 𝐴 → ( ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ↔ ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
19 18 rspccv ( ∀ 𝑤 ∈ ( 𝐶𝐷 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) → ( 𝐴 ∈ ( 𝐶𝐷 ) → ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) )
20 15 19 syl6com ( ∀ 𝑦𝐵𝑧𝐵𝑤 ∈ ( 𝑦𝑧 ) ∃ 𝑥𝐵 ( 𝑤𝑥𝑥 ⊆ ( 𝑦𝑧 ) ) → ( ( 𝐶𝐵𝐷𝐵 ) → ( 𝐴 ∈ ( 𝐶𝐷 ) → ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) ) )
21 2 20 syl ( 𝐵 ∈ TopBases → ( ( 𝐶𝐵𝐷𝐵 ) → ( 𝐴 ∈ ( 𝐶𝐷 ) → ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) ) )
22 21 expd ( 𝐵 ∈ TopBases → ( 𝐶𝐵 → ( 𝐷𝐵 → ( 𝐴 ∈ ( 𝐶𝐷 ) → ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) ) ) ) )
23 22 imp43 ( ( ( 𝐵 ∈ TopBases ∧ 𝐶𝐵 ) ∧ ( 𝐷𝐵𝐴 ∈ ( 𝐶𝐷 ) ) ) → ∃ 𝑥𝐵 ( 𝐴𝑥𝑥 ⊆ ( 𝐶𝐷 ) ) )