| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-endval.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 2 |
|
bj-endval.x |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 3 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 4 |
|
fvexd |
⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ∈ V ) |
| 5 |
3 4
|
strfvnd |
⊢ ( 𝜑 → ( Base ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ‘ ( Base ‘ ndx ) ) ) |
| 6 |
1 2
|
bj-endval |
⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝜑 → ( ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ‘ ( Base ‘ ndx ) ) = ( { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( Base ‘ ndx ) ) ) |
| 8 |
|
basendxnplusgndx |
⊢ ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) |
| 9 |
|
fvex |
⊢ ( Base ‘ ndx ) ∈ V |
| 10 |
|
ovex |
⊢ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ∈ V |
| 11 |
9 10
|
fvpr1 |
⊢ ( ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) → ( { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( Base ‘ ndx ) ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 12 |
8 11
|
mp1i |
⊢ ( 𝜑 → ( { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( Base ‘ ndx ) ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 13 |
5 7 12
|
3eqtrd |
⊢ ( 𝜑 → ( Base ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |