Metamath Proof Explorer


Theorem bj-sbnf

Description: Move nonfree predicate in and out of substitution; see sbal and sbex . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion bj-sbnf ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 sbim ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) )
2 sbal ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 )
3 2 imbi2i ( ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) )
4 1 3 bitri ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) )
5 4 albii ( ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) )
6 nf5 ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) )
7 6 sbbii ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) )
8 sbal ( [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) )
9 7 8 bitri ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) )
10 nf5 ( Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) )
11 5 9 10 3bitr4i ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 )