Step |
Hyp |
Ref |
Expression |
1 |
|
sbim |
⊢ ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) |
2 |
|
sbal |
⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
3 |
2
|
imbi2i |
⊢ ( ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
4 |
1 3
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
5 |
4
|
albii |
⊢ ( ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
6 |
|
nf5 |
⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
7 |
6
|
sbbii |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
8 |
|
sbal |
⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
9 |
7 8
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
10 |
|
nf5 |
⊢ ( Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
11 |
5 9 10
|
3bitr4i |
⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |