Description: Version of seex with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-seex.nf | ⊢ Ⅎ 𝑥 𝐵 | |
Assertion | bj-seex | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-seex.nf | ⊢ Ⅎ 𝑥 𝐵 | |
2 | df-se | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑦 } ∈ V ) | |
3 | 1 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = 𝐵 |
4 | breq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝐵 ) ) | |
5 | 3 4 | rabbid | ⊢ ( 𝑦 = 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑦 } = { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ) |
6 | 5 | eleq1d | ⊢ ( 𝑦 = 𝐵 → ( { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑦 } ∈ V ↔ { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ∈ V ) ) |
7 | 6 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝑦 } ∈ V ∧ 𝐵 ∈ 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ∈ V ) |
8 | 2 7 | sylanb | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝐵 ∈ 𝐴 ) → { 𝑥 ∈ 𝐴 ∣ 𝑥 𝑅 𝐵 } ∈ V ) |