Metamath Proof Explorer


Theorem bj-seex

Description: Version of seex with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019)

Ref Expression
Hypothesis bj-seex.nf 𝑥 𝐵
Assertion bj-seex ( ( 𝑅 Se 𝐴𝐵𝐴 ) → { 𝑥𝐴𝑥 𝑅 𝐵 } ∈ V )

Proof

Step Hyp Ref Expression
1 bj-seex.nf 𝑥 𝐵
2 df-se ( 𝑅 Se 𝐴 ↔ ∀ 𝑦𝐴 { 𝑥𝐴𝑥 𝑅 𝑦 } ∈ V )
3 1 nfeq2 𝑥 𝑦 = 𝐵
4 breq2 ( 𝑦 = 𝐵 → ( 𝑥 𝑅 𝑦𝑥 𝑅 𝐵 ) )
5 3 4 rabbid ( 𝑦 = 𝐵 → { 𝑥𝐴𝑥 𝑅 𝑦 } = { 𝑥𝐴𝑥 𝑅 𝐵 } )
6 5 eleq1d ( 𝑦 = 𝐵 → ( { 𝑥𝐴𝑥 𝑅 𝑦 } ∈ V ↔ { 𝑥𝐴𝑥 𝑅 𝐵 } ∈ V ) )
7 6 rspccva ( ( ∀ 𝑦𝐴 { 𝑥𝐴𝑥 𝑅 𝑦 } ∈ V ∧ 𝐵𝐴 ) → { 𝑥𝐴𝑥 𝑅 𝐵 } ∈ V )
8 2 7 sylanb ( ( 𝑅 Se 𝐴𝐵𝐴 ) → { 𝑥𝐴𝑥 𝑅 𝐵 } ∈ V )