| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-nfcf.nf |
⊢ Ⅎ 𝑦 𝐴 |
| 2 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 ) |
| 3 |
1
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ 𝐴 |
| 4 |
3
|
nfnf |
⊢ Ⅎ 𝑦 Ⅎ 𝑥 𝑧 ∈ 𝐴 |
| 5 |
4
|
sb8f |
⊢ ( ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ ∀ 𝑦 [ 𝑦 / 𝑧 ] Ⅎ 𝑥 𝑧 ∈ 𝐴 ) |
| 6 |
|
sbnf |
⊢ ( [ 𝑦 / 𝑧 ] Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ 𝑥 [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 ) |
| 7 |
|
clelsb1 |
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) |
| 8 |
7
|
nfbii |
⊢ ( Ⅎ 𝑥 [ 𝑦 / 𝑧 ] 𝑧 ∈ 𝐴 ↔ Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 9 |
6 8
|
bitri |
⊢ ( [ 𝑦 / 𝑧 ] Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 10 |
9
|
albii |
⊢ ( ∀ 𝑦 [ 𝑦 / 𝑧 ] Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 11 |
5 10
|
bitri |
⊢ ( ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 12 |
2 11
|
bitri |
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |