Metamath Proof Explorer


Theorem bj-seex

Description: Version of seex with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019)

Ref Expression
Hypothesis bj-seex.nf
|- F/_ x B
Assertion bj-seex
|- ( ( R Se A /\ B e. A ) -> { x e. A | x R B } e. _V )

Proof

Step Hyp Ref Expression
1 bj-seex.nf
 |-  F/_ x B
2 df-se
 |-  ( R Se A <-> A. y e. A { x e. A | x R y } e. _V )
3 1 nfeq2
 |-  F/ x y = B
4 breq2
 |-  ( y = B -> ( x R y <-> x R B ) )
5 3 4 rabbid
 |-  ( y = B -> { x e. A | x R y } = { x e. A | x R B } )
6 5 eleq1d
 |-  ( y = B -> ( { x e. A | x R y } e. _V <-> { x e. A | x R B } e. _V ) )
7 6 rspccva
 |-  ( ( A. y e. A { x e. A | x R y } e. _V /\ B e. A ) -> { x e. A | x R B } e. _V )
8 2 7 sylanb
 |-  ( ( R Se A /\ B e. A ) -> { x e. A | x R B } e. _V )