Description: Version of seex with a disjoint variable condition replaced by a nonfreeness hypothesis (for the sake of illustration). (Contributed by BJ, 27-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bj-seex.nf | |- F/_ x B |
|
Assertion | bj-seex | |- ( ( R Se A /\ B e. A ) -> { x e. A | x R B } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-seex.nf | |- F/_ x B |
|
2 | df-se | |- ( R Se A <-> A. y e. A { x e. A | x R y } e. _V ) |
|
3 | 1 | nfeq2 | |- F/ x y = B |
4 | breq2 | |- ( y = B -> ( x R y <-> x R B ) ) |
|
5 | 3 4 | rabbid | |- ( y = B -> { x e. A | x R y } = { x e. A | x R B } ) |
6 | 5 | eleq1d | |- ( y = B -> ( { x e. A | x R y } e. _V <-> { x e. A | x R B } e. _V ) ) |
7 | 6 | rspccva | |- ( ( A. y e. A { x e. A | x R y } e. _V /\ B e. A ) -> { x e. A | x R B } e. _V ) |
8 | 2 7 | sylanb | |- ( ( R Se A /\ B e. A ) -> { x e. A | x R B } e. _V ) |