Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021) (Proof shortened by BJ, 10-Apr-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-snmooreb | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ∈ Moore ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snmoore | ⊢ ( 𝐴 ∈ V → { 𝐴 } ∈ Moore ) | |
2 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
3 | 2 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
4 | bj-0nmoore | ⊢ ¬ ∅ ∈ Moore | |
5 | 4 | a1i | ⊢ ( ¬ 𝐴 ∈ V → ¬ ∅ ∈ Moore ) |
6 | 3 5 | eqneltrd | ⊢ ( ¬ 𝐴 ∈ V → ¬ { 𝐴 } ∈ Moore ) |
7 | 6 | con4i | ⊢ ( { 𝐴 } ∈ Moore → 𝐴 ∈ V ) |
8 | 1 7 | impbii | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ∈ Moore ) |