Metamath Proof Explorer


Theorem bj-snmooreb

Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021) (Proof shortened by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmooreb ( 𝐴 ∈ V ↔ { 𝐴 } ∈ Moore )

Proof

Step Hyp Ref Expression
1 bj-snmoore ( 𝐴 ∈ V → { 𝐴 } ∈ Moore )
2 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
3 2 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
4 bj-0nmoore ¬ ∅ ∈ Moore
5 4 a1i ( ¬ 𝐴 ∈ V → ¬ ∅ ∈ Moore )
6 3 5 eqneltrd ( ¬ 𝐴 ∈ V → ¬ { 𝐴 } ∈ Moore )
7 6 con4i ( { 𝐴 } ∈ Moore𝐴 ∈ V )
8 1 7 impbii ( 𝐴 ∈ V ↔ { 𝐴 } ∈ Moore )