Description: A singleton is a Moore collection, biconditional version. (Contributed by BJ, 9-Dec-2021) (Proof shortened by BJ, 10-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-snmooreb | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ∈ Moore ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-snmoore | ⊢ ( 𝐴 ∈ V → { 𝐴 } ∈ Moore ) | |
| 2 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 3 | 2 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) | 
| 4 | bj-0nmoore | ⊢ ¬ ∅ ∈ Moore | |
| 5 | 4 | a1i | ⊢ ( ¬ 𝐴 ∈ V → ¬ ∅ ∈ Moore ) | 
| 6 | 3 5 | eqneltrd | ⊢ ( ¬ 𝐴 ∈ V → ¬ { 𝐴 } ∈ Moore ) | 
| 7 | 6 | con4i | ⊢ ( { 𝐴 } ∈ Moore → 𝐴 ∈ V ) | 
| 8 | 1 7 | impbii | ⊢ ( 𝐴 ∈ V ↔ { 𝐴 } ∈ Moore ) |