| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unisng | ⊢ ( 𝐴  ∈  𝑉  →  ∪  { 𝐴 }  =  𝐴 ) | 
						
							| 2 |  | snidg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  { 𝐴 } ) | 
						
							| 3 | 1 2 | eqeltrd | ⊢ ( 𝐴  ∈  𝑉  →  ∪  { 𝐴 }  ∈  { 𝐴 } ) | 
						
							| 4 |  | df-ne | ⊢ ( 𝑥  ≠  ∅  ↔  ¬  𝑥  =  ∅ ) | 
						
							| 5 |  | sssn | ⊢ ( 𝑥  ⊆  { 𝐴 }  ↔  ( 𝑥  =  ∅  ∨  𝑥  =  { 𝐴 } ) ) | 
						
							| 6 |  | biorf | ⊢ ( ¬  𝑥  =  ∅  →  ( 𝑥  =  { 𝐴 }  ↔  ( 𝑥  =  ∅  ∨  𝑥  =  { 𝐴 } ) ) ) | 
						
							| 7 | 6 | biimpar | ⊢ ( ( ¬  𝑥  =  ∅  ∧  ( 𝑥  =  ∅  ∨  𝑥  =  { 𝐴 } ) )  →  𝑥  =  { 𝐴 } ) | 
						
							| 8 | 4 5 7 | syl2anb | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  { 𝐴 } )  →  𝑥  =  { 𝐴 } ) | 
						
							| 9 |  | inteq | ⊢ ( 𝑥  =  { 𝐴 }  →  ∩  𝑥  =  ∩  { 𝐴 } ) | 
						
							| 10 |  | intsng | ⊢ ( 𝐴  ∈  𝑉  →  ∩  { 𝐴 }  =  𝐴 ) | 
						
							| 11 |  | eqtr | ⊢ ( ( ∩  𝑥  =  ∩  { 𝐴 }  ∧  ∩  { 𝐴 }  =  𝐴 )  →  ∩  𝑥  =  𝐴 ) | 
						
							| 12 | 11 | ex | ⊢ ( ∩  𝑥  =  ∩  { 𝐴 }  →  ( ∩  { 𝐴 }  =  𝐴  →  ∩  𝑥  =  𝐴 ) ) | 
						
							| 13 | 9 10 12 | syl2im | ⊢ ( 𝑥  =  { 𝐴 }  →  ( 𝐴  ∈  𝑉  →  ∩  𝑥  =  𝐴 ) ) | 
						
							| 14 |  | intex | ⊢ ( 𝑥  ≠  ∅  ↔  ∩  𝑥  ∈  V ) | 
						
							| 15 |  | elsng | ⊢ ( ∩  𝑥  ∈  V  →  ( ∩  𝑥  ∈  { 𝐴 }  ↔  ∩  𝑥  =  𝐴 ) ) | 
						
							| 16 | 14 15 | sylbi | ⊢ ( 𝑥  ≠  ∅  →  ( ∩  𝑥  ∈  { 𝐴 }  ↔  ∩  𝑥  =  𝐴 ) ) | 
						
							| 17 | 16 | biimprd | ⊢ ( 𝑥  ≠  ∅  →  ( ∩  𝑥  =  𝐴  →  ∩  𝑥  ∈  { 𝐴 } ) ) | 
						
							| 18 | 13 17 | sylan9r | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  =  { 𝐴 } )  →  ( 𝐴  ∈  𝑉  →  ∩  𝑥  ∈  { 𝐴 } ) ) | 
						
							| 19 | 8 18 | syldan | ⊢ ( ( 𝑥  ≠  ∅  ∧  𝑥  ⊆  { 𝐴 } )  →  ( 𝐴  ∈  𝑉  →  ∩  𝑥  ∈  { 𝐴 } ) ) | 
						
							| 20 | 19 | ancoms | ⊢ ( ( 𝑥  ⊆  { 𝐴 }  ∧  𝑥  ≠  ∅ )  →  ( 𝐴  ∈  𝑉  →  ∩  𝑥  ∈  { 𝐴 } ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝑥  ⊆  { 𝐴 }  ∧  𝑥  ≠  ∅ ) )  →  ∩  𝑥  ∈  { 𝐴 } ) | 
						
							| 22 | 3 21 | bj-ismooredr2 | ⊢ ( 𝐴  ∈  𝑉  →  { 𝐴 }  ∈  Moore ) |