Metamath Proof Explorer


Theorem bj-snmoore

Description: A singleton is a Moore collection. See bj-snmooreb for a biconditional version. (Contributed by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmoore ( 𝐴𝑉 → { 𝐴 } ∈ Moore )

Proof

Step Hyp Ref Expression
1 unisng ( 𝐴𝑉 { 𝐴 } = 𝐴 )
2 snidg ( 𝐴𝑉𝐴 ∈ { 𝐴 } )
3 1 2 eqeltrd ( 𝐴𝑉 { 𝐴 } ∈ { 𝐴 } )
4 df-ne ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ )
5 sssn ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) )
6 biorf ( ¬ 𝑥 = ∅ → ( 𝑥 = { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) )
7 6 biimpar ( ( ¬ 𝑥 = ∅ ∧ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) → 𝑥 = { 𝐴 } )
8 4 5 7 syl2anb ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ { 𝐴 } ) → 𝑥 = { 𝐴 } )
9 inteq ( 𝑥 = { 𝐴 } → 𝑥 = { 𝐴 } )
10 intsng ( 𝐴𝑉 { 𝐴 } = 𝐴 )
11 eqtr ( ( 𝑥 = { 𝐴 } ∧ { 𝐴 } = 𝐴 ) → 𝑥 = 𝐴 )
12 11 ex ( 𝑥 = { 𝐴 } → ( { 𝐴 } = 𝐴 𝑥 = 𝐴 ) )
13 9 10 12 syl2im ( 𝑥 = { 𝐴 } → ( 𝐴𝑉 𝑥 = 𝐴 ) )
14 intex ( 𝑥 ≠ ∅ ↔ 𝑥 ∈ V )
15 elsng ( 𝑥 ∈ V → ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) )
16 14 15 sylbi ( 𝑥 ≠ ∅ → ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) )
17 16 biimprd ( 𝑥 ≠ ∅ → ( 𝑥 = 𝐴 𝑥 ∈ { 𝐴 } ) )
18 13 17 sylan9r ( ( 𝑥 ≠ ∅ ∧ 𝑥 = { 𝐴 } ) → ( 𝐴𝑉 𝑥 ∈ { 𝐴 } ) )
19 8 18 syldan ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ { 𝐴 } ) → ( 𝐴𝑉 𝑥 ∈ { 𝐴 } ) )
20 19 ancoms ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ( 𝐴𝑉 𝑥 ∈ { 𝐴 } ) )
21 20 impcom ( ( 𝐴𝑉 ∧ ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) → 𝑥 ∈ { 𝐴 } )
22 3 21 bj-ismooredr2 ( 𝐴𝑉 → { 𝐴 } ∈ Moore )