Step |
Hyp |
Ref |
Expression |
1 |
|
unisng |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
2 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
3 |
1 2
|
eqeltrd |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } ∈ { 𝐴 } ) |
4 |
|
df-ne |
⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ ) |
5 |
|
sssn |
⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) |
6 |
|
biorf |
⊢ ( ¬ 𝑥 = ∅ → ( 𝑥 = { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) ) |
7 |
6
|
biimpar |
⊢ ( ( ¬ 𝑥 = ∅ ∧ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) → 𝑥 = { 𝐴 } ) |
8 |
4 5 7
|
syl2anb |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ { 𝐴 } ) → 𝑥 = { 𝐴 } ) |
9 |
|
inteq |
⊢ ( 𝑥 = { 𝐴 } → ∩ 𝑥 = ∩ { 𝐴 } ) |
10 |
|
intsng |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝐴 } = 𝐴 ) |
11 |
|
eqtr |
⊢ ( ( ∩ 𝑥 = ∩ { 𝐴 } ∧ ∩ { 𝐴 } = 𝐴 ) → ∩ 𝑥 = 𝐴 ) |
12 |
11
|
ex |
⊢ ( ∩ 𝑥 = ∩ { 𝐴 } → ( ∩ { 𝐴 } = 𝐴 → ∩ 𝑥 = 𝐴 ) ) |
13 |
9 10 12
|
syl2im |
⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 = 𝐴 ) ) |
14 |
|
intex |
⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) |
15 |
|
elsng |
⊢ ( ∩ 𝑥 ∈ V → ( ∩ 𝑥 ∈ { 𝐴 } ↔ ∩ 𝑥 = 𝐴 ) ) |
16 |
14 15
|
sylbi |
⊢ ( 𝑥 ≠ ∅ → ( ∩ 𝑥 ∈ { 𝐴 } ↔ ∩ 𝑥 = 𝐴 ) ) |
17 |
16
|
biimprd |
⊢ ( 𝑥 ≠ ∅ → ( ∩ 𝑥 = 𝐴 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
18 |
13 17
|
sylan9r |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 = { 𝐴 } ) → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
19 |
8 18
|
syldan |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ { 𝐴 } ) → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
20 |
19
|
ancoms |
⊢ ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
21 |
20
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) → ∩ 𝑥 ∈ { 𝐴 } ) |
22 |
3 21
|
bj-ismooredr2 |
⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ∈ Moore ) |