| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unisng |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } = 𝐴 ) |
| 2 |
|
snidg |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) |
| 3 |
1 2
|
eqeltrd |
⊢ ( 𝐴 ∈ 𝑉 → ∪ { 𝐴 } ∈ { 𝐴 } ) |
| 4 |
|
df-ne |
⊢ ( 𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅ ) |
| 5 |
|
sssn |
⊢ ( 𝑥 ⊆ { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) |
| 6 |
|
biorf |
⊢ ( ¬ 𝑥 = ∅ → ( 𝑥 = { 𝐴 } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) ) |
| 7 |
6
|
biimpar |
⊢ ( ( ¬ 𝑥 = ∅ ∧ ( 𝑥 = ∅ ∨ 𝑥 = { 𝐴 } ) ) → 𝑥 = { 𝐴 } ) |
| 8 |
4 5 7
|
syl2anb |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ { 𝐴 } ) → 𝑥 = { 𝐴 } ) |
| 9 |
|
inteq |
⊢ ( 𝑥 = { 𝐴 } → ∩ 𝑥 = ∩ { 𝐴 } ) |
| 10 |
|
intsng |
⊢ ( 𝐴 ∈ 𝑉 → ∩ { 𝐴 } = 𝐴 ) |
| 11 |
|
eqtr |
⊢ ( ( ∩ 𝑥 = ∩ { 𝐴 } ∧ ∩ { 𝐴 } = 𝐴 ) → ∩ 𝑥 = 𝐴 ) |
| 12 |
11
|
ex |
⊢ ( ∩ 𝑥 = ∩ { 𝐴 } → ( ∩ { 𝐴 } = 𝐴 → ∩ 𝑥 = 𝐴 ) ) |
| 13 |
9 10 12
|
syl2im |
⊢ ( 𝑥 = { 𝐴 } → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 = 𝐴 ) ) |
| 14 |
|
intex |
⊢ ( 𝑥 ≠ ∅ ↔ ∩ 𝑥 ∈ V ) |
| 15 |
|
elsng |
⊢ ( ∩ 𝑥 ∈ V → ( ∩ 𝑥 ∈ { 𝐴 } ↔ ∩ 𝑥 = 𝐴 ) ) |
| 16 |
14 15
|
sylbi |
⊢ ( 𝑥 ≠ ∅ → ( ∩ 𝑥 ∈ { 𝐴 } ↔ ∩ 𝑥 = 𝐴 ) ) |
| 17 |
16
|
biimprd |
⊢ ( 𝑥 ≠ ∅ → ( ∩ 𝑥 = 𝐴 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
| 18 |
13 17
|
sylan9r |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 = { 𝐴 } ) → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
| 19 |
8 18
|
syldan |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ { 𝐴 } ) → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
| 20 |
19
|
ancoms |
⊢ ( ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) → ( 𝐴 ∈ 𝑉 → ∩ 𝑥 ∈ { 𝐴 } ) ) |
| 21 |
20
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ⊆ { 𝐴 } ∧ 𝑥 ≠ ∅ ) ) → ∩ 𝑥 ∈ { 𝐴 } ) |
| 22 |
3 21
|
bj-ismooredr2 |
⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ∈ Moore ) |