Metamath Proof Explorer


Theorem bj-snmoore

Description: A singleton is a Moore collection. See bj-snmooreb for a biconditional version. (Contributed by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmoore A V A Moore _

Proof

Step Hyp Ref Expression
1 unisng A V A = A
2 snidg A V A A
3 1 2 eqeltrd A V A A
4 df-ne x ¬ x =
5 sssn x A x = x = A
6 biorf ¬ x = x = A x = x = A
7 6 biimpar ¬ x = x = x = A x = A
8 4 5 7 syl2anb x x A x = A
9 inteq x = A x = A
10 intsng A V A = A
11 eqtr x = A A = A x = A
12 11 ex x = A A = A x = A
13 9 10 12 syl2im x = A A V x = A
14 intex x x V
15 elsng x V x A x = A
16 14 15 sylbi x x A x = A
17 16 biimprd x x = A x A
18 13 17 sylan9r x x = A A V x A
19 8 18 syldan x x A A V x A
20 19 ancoms x A x A V x A
21 20 impcom A V x A x x A
22 3 21 bj-ismooredr2 A V A Moore _