| Step | Hyp | Ref | Expression | 
						
							| 1 |  | unisng |  |-  ( A e. V -> U. { A } = A ) | 
						
							| 2 |  | snidg |  |-  ( A e. V -> A e. { A } ) | 
						
							| 3 | 1 2 | eqeltrd |  |-  ( A e. V -> U. { A } e. { A } ) | 
						
							| 4 |  | df-ne |  |-  ( x =/= (/) <-> -. x = (/) ) | 
						
							| 5 |  | sssn |  |-  ( x C_ { A } <-> ( x = (/) \/ x = { A } ) ) | 
						
							| 6 |  | biorf |  |-  ( -. x = (/) -> ( x = { A } <-> ( x = (/) \/ x = { A } ) ) ) | 
						
							| 7 | 6 | biimpar |  |-  ( ( -. x = (/) /\ ( x = (/) \/ x = { A } ) ) -> x = { A } ) | 
						
							| 8 | 4 5 7 | syl2anb |  |-  ( ( x =/= (/) /\ x C_ { A } ) -> x = { A } ) | 
						
							| 9 |  | inteq |  |-  ( x = { A } -> |^| x = |^| { A } ) | 
						
							| 10 |  | intsng |  |-  ( A e. V -> |^| { A } = A ) | 
						
							| 11 |  | eqtr |  |-  ( ( |^| x = |^| { A } /\ |^| { A } = A ) -> |^| x = A ) | 
						
							| 12 | 11 | ex |  |-  ( |^| x = |^| { A } -> ( |^| { A } = A -> |^| x = A ) ) | 
						
							| 13 | 9 10 12 | syl2im |  |-  ( x = { A } -> ( A e. V -> |^| x = A ) ) | 
						
							| 14 |  | intex |  |-  ( x =/= (/) <-> |^| x e. _V ) | 
						
							| 15 |  | elsng |  |-  ( |^| x e. _V -> ( |^| x e. { A } <-> |^| x = A ) ) | 
						
							| 16 | 14 15 | sylbi |  |-  ( x =/= (/) -> ( |^| x e. { A } <-> |^| x = A ) ) | 
						
							| 17 | 16 | biimprd |  |-  ( x =/= (/) -> ( |^| x = A -> |^| x e. { A } ) ) | 
						
							| 18 | 13 17 | sylan9r |  |-  ( ( x =/= (/) /\ x = { A } ) -> ( A e. V -> |^| x e. { A } ) ) | 
						
							| 19 | 8 18 | syldan |  |-  ( ( x =/= (/) /\ x C_ { A } ) -> ( A e. V -> |^| x e. { A } ) ) | 
						
							| 20 | 19 | ancoms |  |-  ( ( x C_ { A } /\ x =/= (/) ) -> ( A e. V -> |^| x e. { A } ) ) | 
						
							| 21 | 20 | impcom |  |-  ( ( A e. V /\ ( x C_ { A } /\ x =/= (/) ) ) -> |^| x e. { A } ) | 
						
							| 22 | 3 21 | bj-ismooredr2 |  |-  ( A e. V -> { A } e. Moore_ ) |