| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unisng |
|- ( A e. V -> U. { A } = A ) |
| 2 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 3 |
1 2
|
eqeltrd |
|- ( A e. V -> U. { A } e. { A } ) |
| 4 |
|
df-ne |
|- ( x =/= (/) <-> -. x = (/) ) |
| 5 |
|
sssn |
|- ( x C_ { A } <-> ( x = (/) \/ x = { A } ) ) |
| 6 |
|
biorf |
|- ( -. x = (/) -> ( x = { A } <-> ( x = (/) \/ x = { A } ) ) ) |
| 7 |
6
|
biimpar |
|- ( ( -. x = (/) /\ ( x = (/) \/ x = { A } ) ) -> x = { A } ) |
| 8 |
4 5 7
|
syl2anb |
|- ( ( x =/= (/) /\ x C_ { A } ) -> x = { A } ) |
| 9 |
|
inteq |
|- ( x = { A } -> |^| x = |^| { A } ) |
| 10 |
|
intsng |
|- ( A e. V -> |^| { A } = A ) |
| 11 |
|
eqtr |
|- ( ( |^| x = |^| { A } /\ |^| { A } = A ) -> |^| x = A ) |
| 12 |
11
|
ex |
|- ( |^| x = |^| { A } -> ( |^| { A } = A -> |^| x = A ) ) |
| 13 |
9 10 12
|
syl2im |
|- ( x = { A } -> ( A e. V -> |^| x = A ) ) |
| 14 |
|
intex |
|- ( x =/= (/) <-> |^| x e. _V ) |
| 15 |
|
elsng |
|- ( |^| x e. _V -> ( |^| x e. { A } <-> |^| x = A ) ) |
| 16 |
14 15
|
sylbi |
|- ( x =/= (/) -> ( |^| x e. { A } <-> |^| x = A ) ) |
| 17 |
16
|
biimprd |
|- ( x =/= (/) -> ( |^| x = A -> |^| x e. { A } ) ) |
| 18 |
13 17
|
sylan9r |
|- ( ( x =/= (/) /\ x = { A } ) -> ( A e. V -> |^| x e. { A } ) ) |
| 19 |
8 18
|
syldan |
|- ( ( x =/= (/) /\ x C_ { A } ) -> ( A e. V -> |^| x e. { A } ) ) |
| 20 |
19
|
ancoms |
|- ( ( x C_ { A } /\ x =/= (/) ) -> ( A e. V -> |^| x e. { A } ) ) |
| 21 |
20
|
impcom |
|- ( ( A e. V /\ ( x C_ { A } /\ x =/= (/) ) ) -> |^| x e. { A } ) |
| 22 |
3 21
|
bj-ismooredr2 |
|- ( A e. V -> { A } e. Moore_ ) |