Step |
Hyp |
Ref |
Expression |
1 |
|
unisng |
|- ( A e. V -> U. { A } = A ) |
2 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
3 |
1 2
|
eqeltrd |
|- ( A e. V -> U. { A } e. { A } ) |
4 |
|
df-ne |
|- ( x =/= (/) <-> -. x = (/) ) |
5 |
|
sssn |
|- ( x C_ { A } <-> ( x = (/) \/ x = { A } ) ) |
6 |
|
biorf |
|- ( -. x = (/) -> ( x = { A } <-> ( x = (/) \/ x = { A } ) ) ) |
7 |
6
|
biimpar |
|- ( ( -. x = (/) /\ ( x = (/) \/ x = { A } ) ) -> x = { A } ) |
8 |
4 5 7
|
syl2anb |
|- ( ( x =/= (/) /\ x C_ { A } ) -> x = { A } ) |
9 |
|
inteq |
|- ( x = { A } -> |^| x = |^| { A } ) |
10 |
|
intsng |
|- ( A e. V -> |^| { A } = A ) |
11 |
|
eqtr |
|- ( ( |^| x = |^| { A } /\ |^| { A } = A ) -> |^| x = A ) |
12 |
11
|
ex |
|- ( |^| x = |^| { A } -> ( |^| { A } = A -> |^| x = A ) ) |
13 |
9 10 12
|
syl2im |
|- ( x = { A } -> ( A e. V -> |^| x = A ) ) |
14 |
|
intex |
|- ( x =/= (/) <-> |^| x e. _V ) |
15 |
|
elsng |
|- ( |^| x e. _V -> ( |^| x e. { A } <-> |^| x = A ) ) |
16 |
14 15
|
sylbi |
|- ( x =/= (/) -> ( |^| x e. { A } <-> |^| x = A ) ) |
17 |
16
|
biimprd |
|- ( x =/= (/) -> ( |^| x = A -> |^| x e. { A } ) ) |
18 |
13 17
|
sylan9r |
|- ( ( x =/= (/) /\ x = { A } ) -> ( A e. V -> |^| x e. { A } ) ) |
19 |
8 18
|
syldan |
|- ( ( x =/= (/) /\ x C_ { A } ) -> ( A e. V -> |^| x e. { A } ) ) |
20 |
19
|
ancoms |
|- ( ( x C_ { A } /\ x =/= (/) ) -> ( A e. V -> |^| x e. { A } ) ) |
21 |
20
|
impcom |
|- ( ( A e. V /\ ( x C_ { A } /\ x =/= (/) ) ) -> |^| x e. { A } ) |
22 |
3 21
|
bj-ismooredr2 |
|- ( A e. V -> { A } e. Moore_ ) |