Metamath Proof Explorer


Theorem bj-snmoore

Description: A singleton is a Moore collection. See bj-snmooreb for a biconditional version. (Contributed by BJ, 10-Apr-2024)

Ref Expression
Assertion bj-snmoore
|- ( A e. V -> { A } e. Moore_ )

Proof

Step Hyp Ref Expression
1 unisng
 |-  ( A e. V -> U. { A } = A )
2 snidg
 |-  ( A e. V -> A e. { A } )
3 1 2 eqeltrd
 |-  ( A e. V -> U. { A } e. { A } )
4 df-ne
 |-  ( x =/= (/) <-> -. x = (/) )
5 sssn
 |-  ( x C_ { A } <-> ( x = (/) \/ x = { A } ) )
6 biorf
 |-  ( -. x = (/) -> ( x = { A } <-> ( x = (/) \/ x = { A } ) ) )
7 6 biimpar
 |-  ( ( -. x = (/) /\ ( x = (/) \/ x = { A } ) ) -> x = { A } )
8 4 5 7 syl2anb
 |-  ( ( x =/= (/) /\ x C_ { A } ) -> x = { A } )
9 inteq
 |-  ( x = { A } -> |^| x = |^| { A } )
10 intsng
 |-  ( A e. V -> |^| { A } = A )
11 eqtr
 |-  ( ( |^| x = |^| { A } /\ |^| { A } = A ) -> |^| x = A )
12 11 ex
 |-  ( |^| x = |^| { A } -> ( |^| { A } = A -> |^| x = A ) )
13 9 10 12 syl2im
 |-  ( x = { A } -> ( A e. V -> |^| x = A ) )
14 intex
 |-  ( x =/= (/) <-> |^| x e. _V )
15 elsng
 |-  ( |^| x e. _V -> ( |^| x e. { A } <-> |^| x = A ) )
16 14 15 sylbi
 |-  ( x =/= (/) -> ( |^| x e. { A } <-> |^| x = A ) )
17 16 biimprd
 |-  ( x =/= (/) -> ( |^| x = A -> |^| x e. { A } ) )
18 13 17 sylan9r
 |-  ( ( x =/= (/) /\ x = { A } ) -> ( A e. V -> |^| x e. { A } ) )
19 8 18 syldan
 |-  ( ( x =/= (/) /\ x C_ { A } ) -> ( A e. V -> |^| x e. { A } ) )
20 19 ancoms
 |-  ( ( x C_ { A } /\ x =/= (/) ) -> ( A e. V -> |^| x e. { A } ) )
21 20 impcom
 |-  ( ( A e. V /\ ( x C_ { A } /\ x =/= (/) ) ) -> |^| x e. { A } )
22 3 21 bj-ismooredr2
 |-  ( A e. V -> { A } e. Moore_ )